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ABSTRACT 

Visual Question Answering (VQA) is a relatively newer area of computer science involving computer vision, natural 
language processing, and deep learning. It has the ability to answer questions (currently in English) related to particular 
images that it is shown. Since the original VQA dataset was made publicly available in 2014, we’ve seen datasets 
such as the OK-VQA, Visual7W, and CLEVR that have all explored new concepts, various algorithms exceeding 
previous benchmarks, and methods to evaluate these models. However, to the best of my research, I have not seen any 
math or word problems being integrated into any of the VQA datasets. In this paper, I incorporate the four basic 
mathematical operations into the ‘counting’ questions of the CLEVR dataset and compare how different models fair 
against this modified dataset of 100,00 images and 2.4 million questions. The models we used achieved circa 50% 
validation accuracy within 4 epochs showing room for improvement. If VQA models can assimilate mathematics into 
its question understanding ability, then this can open new pathways for the future. 

Introduction 

Visual Question Answering has become a topic of interest for many computer vision and deep learning researchers as 
it poses a multidisciplinary problem. It is the amalgamation of both language and visual tasks where complex systems 
attempt to answer natural language questions by extracting relevant information, either from the finer details or the 
general scene of an image. Before the novel DAQUAR15 dataset in 2014, due to insufficient training data and compu-
tational power to tackle this problem, this was perceived to be an impractical challenge. But in the years that followed, 
immense progress has been made with several new datasets and improvements to neural network architectures.  

As humans, we can effortlessly classify, count, compare, make inferences, and recognize spatial relation-
ships between objects in images using our common sense and previous experience to guide us. On the contrary, even 
the most intricate AI systems are far from reaching this level of nuanced visual comprehension. To achieve this un-
derstanding, models must be able to reason and apply external information to answer the question at hand, similar to 
what humans do.1 Furthermore, datasets must reduce biases, as they give a false impression of a system’s increasing 
ability to use and understand the details of the visual information to answer the questions. In the past, we’ve seen 
systems answer correctly based on a prior, following patterns and regularities, exploiting question semantics instead 
of focusing on the image itself.1 Another instance of bias is the visual priming bias which addresses that people ask 
questions about objects only when they are present in the picture.2 An example would be asking, “Do you see a ball 
in the image?” only on images that contain a ball. Many advancements have been made to combat these biases, in-
cluding the CLEVR (Compositional Language and Elementary Visual Reasoning) diagnostic dataset with 100k syn-
thetic images and 853k unique questions that test different visual reasoning abilities.3  
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The images in this dataset are visually simple and only consist of basic 3D shapes reorganized with different 
spatial relations and different physical properties. Each image contains several 3D-rendered objects that have one of 
each of the following attributes, seen in Figure 1: 
 

(i) Size: Large, Small 
(ii) Shape: Cube, Cylinder, Sphere 
(iii) Color: Blue, Brown, Cyan, Gray, Green, Purple, Red, Yellow 
(iv) Material: Metal, Rubber 

 
However, the questions are more complex than the standard VQA question. By including the reduction of “ques-

tion-conditional bias via rejection sampling”, avoiding convoluted questions that in actuality have simple shortcuts, 
and  
 

 
 
 
 
 
 
 
 
 
 
 

Then, we discuss the method of constructing the CLEVR-Ops dataset, and assess whether the current VQA 
models can attain similar results as they did on the CLEVR. 
 
Related Works  
 
As previously mentioned, VQA is a challenging task due to models exploiting biases in the datasets and therefore only 
being able to superficially comprehend the images and questions.4 It runs into many issues because of its inherent 
complexity, being at the intersection NLP and Computer Vision. Challenges arise from both subdomains such as in 
object detection, object counting, entity recognition, and language generation. 

Figure 1. Attributes of CLEVR Questions. The attrib-
utes (Size, Shape, Color, Material) of each object are 
adjacently grouped together. The questions have empty 
spaces for the attributes, which are either filled or kept 
empty depending on the ground truth representations 
for the image. 

 

containing ground-truth detailed image annotations, it 
ensures that a variety of reasoning skills are necessary 
to answer these complex questions. While the CLEVR 
dataset requires relatively complex reasoning skills 
from these machine learning models, it seems the cur-
rent models are able to solve this type of complexity 
with ease and achieve high accuracy. With the modified 
dataset we will compare and evaluate the best state-of-
the-art models for CLEVR to see if they can achieve the 
same accuracies after incorporating four fundamental 
operations into the CLEVR counting questions: addi-
tion, subtraction, multiplication, and division. 

In this paper we propose a modification to the 
synthetic CLEVR dataset to incorporate mathematical 
reasoning. We alter each counting type question and 
add another layer to the basic VQA structure, so it now 
combines language, visual, and simple arithmetic rea-
soning. To achieve the stated research goal, the paper is 
structured as follows. We will review previous ad-
vancements in this field to provide the reader a baseline 
for understanding our research. 
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In many cases models and networks tend to fail on novel test instances, and lack complete understanding of 
both the question being asked and the image perceived. On the original VQA dataset, popular architectures such as 
the CNN+LSTM, CNN+LSTM with-attention, and MCB (multimodal compact bilinear) return answers after ‘listen-
ing’ to only half of the question.4,5 Furthermore, there is no significant change in performance when the visual entity 
is removed defeating the purpose of visual question answering. CLEVR is able to resolve this issue due to its ‘highly 
compositional questions’. Models needs to be adjusted to account for these questions that require a variety of visual 
reasoning abilities such as attribute identification, counting, comparing, spatial relationships, and logical operations. 

In recent years a variety of VQA benchmarks have been proposed.6-12 These benchmarks add a new compo-
nent to the underlying simplicity of VQA using images from renowned and expansive datasets such as MS COCO 
with 120,000 images.14 OK-VQA augments the idea that to answer challenging questions, external knowledge, apart 
from the image itself, is required to fulfill this task.6 Visual Genome is one of the largest datasets allowing more 
diverse answers due to the free-form and region-based questioning method for each QA pair.7 This method reduced 
biases and with the lack of binary questions, driving more complex questions to exist. Visual7w a subset of Visual 
genome, provides object-level grounding annotations that correlate the object in the question to their respective 
‘bounding box’, for the seven different ‘W’ questions (what, where, when, who, why, how and which).8 Visual 
Madlibs proposes the idea that instead of general image description, algorithms can answer for focused and detail-
oriented questions by collecting automated fill-in-the-blank templates and multiple-choice questions for evaluation.9,13 
COCO-QA uses its own question generation algorithm which helps construct a dataset by converting image descrip-
tions to questions.10 For example, the image caption could be “There is a red balloon floating in the sky.” Using that 
a natural language question like “What color is the balloon” can be formed. FM-IQA is a multilingual dataset that 
contains Chinese QA pairs which produces full sentence answers.11 The evaluation was done quite distinctly, by hu-
man judges. They conduct a Visual Turing test to determine whether the answer was given by a human or their mQA 
model, and proceed to rate the answer on a scale from 0-2. MovieQA uses subtitled movies, scripts written by screen-
writers, DVS narrations, and video clips to benchmark ‘automatic story comprehension’ from both video and textual 
information aiming to evaluate semantic understanding over extended temporal data.12 

There have also been datasets that utilize synthetic images and questions for visual reasoning. A few ad-
vantages that synthetic datasets have over real-world data include: (i) ability to control the data; (ii) no data collection 
cost; (iii) lower and easier to reduce biases; (iv) explores high-level reason instead of purely vision tasks. The first 
major VQA dataset, DAQUAR, was able to use these advantages. Though relatively small, it contains text templates 
to generate questions.15 A subset of the popular VQA dataset - SYNTH-VQA consists of 50,000 cartoon images of 
various scenarios with human models (different races, ages, genders, expressions), 31 animals and over 100 objects 
all in different positions. SHAPES is a very small unbiased dataset which is a collection of 2D geometric shapes with 
binary questions about attributes, positions, layout and their properties.16 The concept is similar to that of CLEVR 
instead the latter is vastly bigger and utilises 3D objects.  
 

Methodology 
 
Constructing CLEVR-Ops 
 
We created the CLEVR-Ops dataset which was built upon the original CLEVR diagnostic dataset. A diagnostic dataset 
is one that it is used to test the complex reasoning abilities of models and understand the capabilities of VQA systems. 
To do this, biases must be kept at a minimum and therefore synthetic images, which help create a controlled and 
balanced dataset are beneficial. These images are created with scene graph annotations (containing the attributes of 
the objects, their positions, and spatial relations). With this information, the images are rendered using the 3D com-
puter graphics software, Blender. Furthermore, as CLEVR tests various reasoning abilities it contains several question 
templates that each belong to specific ‘question families’, that help create natural language questions. For example, 
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one template could be “How many <C> <M> are there?”, where the <C> and <M> are parameters that need to be 
filled with a color and a material. In each question there are several parameters in the template but not all of them need 
an attribute to be filled, it can be left empty or nil. Examples of these templates can be seen in Figure 1. With 90 
families, each having an average of 4 templates along with up to 19 parameters for each template (including synonyms 
for the attributes), CLEVR has more than 853,000 unique questions, managing to avoid ill-posed and degenerate 
questions resulting in reduced question-conditional bias. Out of the various question types in CLEVR, the counting 
questions seemed to be the most challenging as it had one of the lowest accuracies while testing – only reaching 52.2% 
at best.3 

Over the last few years models such as MDETR, OCCAM, MAC, and NS-VQA have been able increase this 
accuracy tremendously to achieve over 97% accuracy on the counting questions.17-20 These new models have success-
fully overcome the challenge that CLEVR posed. In our dataset CLEVR-Ops, we take this a step further, focusing 
solely on counting questions and adding a new layer of complexity, where the model is not only expected to connect 
visual reasoning to counting, but also identify the correct arithmetic operation and perform it within the given context 
of the question. For this task, we design a dataset with 2.4 million questions that follow similar question structures as 
the original CLEVR with modifications to incorporate math.  

To incorporate math into the dataset, we only use questions that have a numerical answer i.e. the counting 
questions, which account for 23.6% of the original CLEVR dataset. Their answers range from zero to ten, but because 
there are only three to ten objects in an image, having a uniform answer distribution becomes challenging. An unequal 
answer distribution could cause the model to pre-emptively decide on an output/answer simply because it is very 
common. For example, if 50% of the answers were 1, the model may take a shortcut, choose 1, and get the answer 
correct despite not understanding the question. 
 

 
 
Figure 2. CLEVR vs CLEVR-Ops Answer Distribution. Compared to CLEVR, our dataset has a more even distribu-
tion. The most common answer in both datasets is 0. However, in Ops only 18% of answers in 0 whereas in the original 
35% of the answers are 0.  
 

We tried to correct this in our dataset shown in Figure 2. Once we segregated the counting questions, we 
modified them, as exemplified in Figure 3. The questions now incorporate a total of 80 unique text-templates (20 for 
each operation: addition, subtraction, multiplication, and division). For each CLEVR counting question, we added 12 
variations to CLEVR-Ops (3 for each operation) while keeping key phrases from the original. Each of these three only 
differ by a single number. This means that each of these 3 questions follow the exact same template with different 
numerical information. For example, “How many objects are the same size as the blue ball plus 2?” and “How many 
objects are the same size as the blue ball plus 8?” are questions built from “How many objects are the same size as the 
blue ball?” This is to test the pure mathematical capability of the model and give it the data required to understand 
and learn basic arithmetic.  
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Applying MAC to CLEVR-Ops 
 
To evaluate the current state of the art models for VQA on CLEVR-Ops, we implement and assess the performance 
of the Memory Attention and Composition [MAC] model. It performed notably well on the original CLEVR - includ-
ing the counting questions - and its neural network architecture is theoretically compatible with learning of rudimen-
tary arithmetic. 
 

 
 
Figure 3. Modified CLEVR-Ops Questions. The original CLEVR questions are transformed. The modification adds 
a new layer of complexity and due to this, the structure of the question itself becomes more elaborate. The question 
changes from simple counting to counting and arithmetic. 
 

Once given an image (knowledge base) and a question (task description), both of these inputs are converted 
to vector representations and encoded into the input unit. With a core recurrent network seen in Figure 4, the question 
is broken down into multiple series of operations. In the MAC cell the control state is updated after each iteration, and 
using this, information is extracted from the image and entered into the memory state. This process repeats until an 
answer is computed using the question representation and final memory (containing the final intermediate result from 
the relevant extracted information from the image).  

The primary challenge CLEVR-Ops presents is, after being able to achieve this level of reasoning, it must 
also be able to solve the simple arithmetic that we have augmented into the CLEVR-Ops questions.  Natural Language 
Processing techniques have been able to do this in the past by extracting the relevant information from simple word 
problems.21  

Despite the MAC model following a similar concept of segmenting and extracting information from the 
larger question, the question remains of whether it will be able to overcome the new degree of difficulty. 
 
Model Performance Evaluation on CLEVR-Ops 
 
We evaluate the MAC model’s performance on the CLEVR-Ops to establish a baseline for our dataset. We split the 
data into 80k images and 2.4 million question pairs into 82% training and 18% validation. After encoding the input 
images feature vectors using faster-RCNN architecture, we train three different variants of the model on our dataset: 
 

(i) Vanilla MAC 
(ii) MAC with Non-recurrent Control Unit 
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(iii) Vanilla MAC with Self-Attention Write Unit 
 
Each variant has the same model architecture but with a different recurrent network or cell.  
 

 
 
Figure 4. MAC Recurrent Network. The three units: Control, Read, and Write work in conjunction to perform iterative 
reasoning steps for individual smaller sections of the question with information from the knowledge base (image).  
 

Self-Attention Write MAC: When incorporating self-attention into the write unit, instead of each cell only 
considering the preceding intermediate result, all of the previous results are taken into account. An attention distribu-
tion over the prior steps is computed, determining the relevance i.e. how much attention should be paid to the reasoning 
step. Based on this, a weighted average of the memory states combines with the current intermediate result and this 
process repeats. 
 

 
 
Figure 5. Model Training over 4 epochs. From left to right: (i) shows that all 3 variants are performing almost identi-
cally and using the equation of the graphs, after 20 epochs the accuracy can reach up to roughly 80%, (ii) shows us an 
increase in validation loss which suggests that the model is either currently overfitting or due to a diverse range of 
probable values or answers. 
 

Results and Discussion 
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The results of our experiments are shown in Table 1 and the performance of each model is plotted against the number 
of epochs in Figure 5. Due to time and resource constraints, the testing was limited to 4 epochs. However as shown in 
Figure 5 the models were improving significantly after each consecutive cycle. This leads us to believe that with more 
time and training the model will become much closer to understanding the complex counting questions and accurately 
answer them.  
 

 
 
Table 1. Final Results. After 4 epochs, shown above are the final train and validation accuracies for each of the 3 
models to 4 decimal points.  
 

Methods 
 
The final accuracies of the models differ only slightly, meaning that the addition of these variants have very little 
added benefit. With this we can conclude that even the Vanilla MAC is able to answer the CLEVR-Ops questions 
relatively accurately.  

We can see that the performance of the MAC models and its variants fall drastically on the CLEVR-Ops 
when compared to the original CLEVR.  Our evaluation has revealed that despite the continuous progression in this 
field, seemingly simple tasks are demanding for these systems. Having said that, considering the vast number of 
possible answers available in the CLEVR-Ops dataset, achieving a 64% train accuracy and 50% validation accuracy 
demonstrate that the model is learning how to solve these questions to some extent and therefore shows a good proof 
of concept. These models are able to evaluate and perform the required steps to answer the CLEVR-Ops complex 
counting questions to some extent. The observations in Figure 5 suggest that with further training and execution of 
several more epochs, there will be improvements in accuracy and we can see to what extent these models truly under-
stand the modified questions. 
 

Conclusion 
 
This paper introduces the CLEVR-Ops dataset which is designed to augment a new layer of complexity that can aid 
in a diagnostic analysis of state-of-the-art visual question answering models. We’ve successfully incorporated simple 
arithmetic into the original CLEVR and provide a dataset with over 2.4M questions and 80k images. We describe the 
usage of text templates in creating the dataset and the importance of bias minimization in our dataset.  

It is important in this field of research to test this theory and discern whether the limitation lies in the available 
resources or in the architecture of the current models itself. Our study indicates that VQA systems still need to be 
improved greatly before the attempts and the practical applications of scene understanding can be tried and tested. We 
plan to use CLEVR-Ops as a diagnostic dataset focused solely on challenging the counting ability of the present and 
future VQA models in hopes of detecting question biases and evaluating new significant areas of research.  
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