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ABSTRACT 

Untreated lyme disease can lead to neurological, cardiac, and dermatological complications. Rapid diagnosis of the 
erythema migrans (EM) rash, a characteristic symptom of Lyme disease, is therefore crucial to early diagnosis and 
treatment. In this study, we aim to utilize deep learning frameworks including Tensorflow and Keras to create deep 
convolutional neural networks (DCNN) to detect images of acute Lyme Disease from images of erythema migrans. 
This study uses a custom database of erythema migrans images of varying quality to train a DCNN capable of classi-
fying images of EM rashes vs non-EM rashes. Images from publicly available sources were mined to create an initial 
database. Machine based removal of duplicate images was then performed, followed by a thorough examination of all 
images by a clinician. The resulting database was combined with images of confounding rashes and regular skin, 
resulting in a total of 683 images. This database was then used to create a DCNN with an accuracy of 93% when 
classifying images of rashes as EM vs non EM. Finally, this model was converted into a web and mobile application 
to allow for rapid diagnosis of EM rashes by both patients and clinicians. This tool could be used for patient prescreen-
ing prior to treatment and lead to a lower mortality rate from Lyme disease.  

Introduction 

Lyme borreliosis, also known as Lyme disease, is a tick-borne disease caused by the bacterium Borrelia burgdorferi 
and is the most common tick-borne disease in the US alone with over 300,000 cases per year [[1], [2]]. The disease is 
transmitted to humans through the bite of infected blacklegged ticks [1]. In approximately 70-80% of cases, a bullseye 
shaped rash called erythema migrans (EM) marks the site of infection and begins to rapidly spread in a circular fashion 
[3]. This rash typically appears one to two weeks after infection and can last for approximately 4 weeks after it first 
appears [4].  

The diagnosis of Lyme disease relies on the visual identification of the EM rash or the identification of certain 
antibodies through serological testing. However, currently available two-tier serological tests are not recommended 
to be used during the early stages of Lyme disease due to their low specificity (Less than 40%) [5]. In addition, they 
are not always practical for use by giving the extended processing time for results [6]. The most common form of 
diagnosis is through a combination of symptoms, probability of exposure to ticks, and serological testing, which min-
imizes the risk of a false positive [1].  

Early diagnosis of Lyme disease via the detection of the Erythema Migrans (EM) rash is critical because 
antibiotic therapy issued in this phase of the disease is effective in almost 99% of patients. If delayed, the disease may 
progress to the disseminated stage, affecting other organs including the heart and brain [7]. However, diagnosis of an 
EM rash remains a challenge because the lesion can take on many different appearances [8]. For example, EM rashes 
can be commonly confused with drug reactions, insect bites, Ringworm, Urticaria multiforme, or the Pityriasis rosea 
rash [9]. In one study, general practitioners correctly identified non-target EM lesions 64% of the time and classic 
target lesions 80% of the time [10]. This inherent difficulty in diagnosing EM rashes highlights the need for new tools 
to assist clinicians when diagnosing these rashes.  
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Deep learning (DL) is a set of techniques and algorithms that enable computers to discover complicated 
patterns in large sets of data. DL algorithms are being used more often in a medical setting. Advancements in DL 
started around 2012 when deep convolutional neural networks (DCNNs), especially with the introduction of AlexNet, 
began outperforming other established models on a number of important benchmarks [11]. Deep convolutional neural 
networks (DCNNs) are solutions to a wide variety of problems in computer vision, natural language processing and 
robotics. The use of DCNNs in the diagnosis of EM rashes has been investigated before, but these studies focus on 
the creation of the algorithm rather than it’s implementation into a usable form [[12], [13]].  

This study aims to expand on the work of previous studies by not only creating a DCNN for EM classification, 
but by implementing the DCNN into a usable form such as an app or website. The creation of such a tool would 
facilitate the diagnosis of EM rashes by patients, clinicians, and researchers.  
 

Methods 
 
We aim to create a DCNN capable of Binary Classification of EM versus non-EM rashes in skin images. Non-EM 
rashes include images of not only normal skin, but also confounding rashes including skin with fixed drug reaction 
eruptions (FDE), tinea corporis (TC), and pityriasis rosea (PR) [9]. FDE, TC, and PR are all lookalikes to the EM 
rash, but require different methods of treatment [[14], [15], [16]] . 
 
Data Collection 
 

The lack of a publicly available dataset of EM rashes poses the first challenge in the creation of the DCNN. 
To create a database with a sufficient number of images, we first created a python-based web scraper using Selenium 
WebDriver. This web scraper was given a set of keywords including “Erythema migrans”, “bullseye rash”, and “ring-
worm rash”. Using these keywords, the web scraper downloaded images from Google Images. These images were 
then compiled into an initial database with 1194 images. Machine based removal of duplicate images was then per-
formed. Finally, the dataset was curated by a clinician. Inappropriate or irrelevant images were removed, alongside 
images of low quality and low probability of accurate group classification.  
 
DCNN Training 
 
In this study, we utilized a DCNN for our classification model which generates features from images at varying levels 
of detail. The preprocessing required in a DCNN is much lower compared to other traditional classification algorithms 
where filters are hand-engineered [17]. DCCNs are designed to adaptively learn spatial hierarchies of features and 
directly learn and extrapolate from the image data itself [17].  

The DCNN takes a skin image as input and processes the images through many different layers (building 
blocks) to produce an output probability for each class. The three main layers include convolution, pooling, and fully 
connected layers.  
The convolution and pooling layers use multiple layers of processing which apply linear operations between the pixel 
data to perform feature extraction from the given image. [18]. Next nonlinear operations such as the rectified linear 
unit (ReLu) activation function are applied to generate low, mid, and high-level feature representations of the input 
image.  

The last layer is then flattened into a one dimensional vector and is further processed with a fully connected 
layer. Finally, the DCNN outputs a probability value via SoftMax for each class label. All weights and biases from 
the network are learned from backpropagation during training, using several loss optimization strategies such as 
Adam, RSMProp and F1. 
 

Volume 10 Issue 4 (2021) 

ISSN: 2167-1907 www.JSR.org 2



Data Preparation 
 
Before training the model, we split our data into training and validation sets. In machine learning, it is common practice 
to split a dataset with 80% of the data used for training while the remaining portion is used for validation. We followed 
this convention with our data, taking 80% of EM and non-EM images for training and leaving 20 percent of the data 
for the validation set. Before training the model, we applied data augmentation techniques to our images, so we could 
generate more images without blatant repetition. Images were rotated, flipped, shifted, zoomed in and out, and various 
types of preprocessing was applied. The result of these techniques was an increase in the amount of data available to 
train the model. 
 
Modeling  
 
Deep learning frameworks such as Tensorflow and Keras were used alongside transfer learning in this study. We 
utilized a variety of pre trained DCNNs including ResNet50, NasNetLarge, and Mobilenet [[21], [22], [23]]. All of 
these models were trained on the ImageNet dataset to classify thousands of different images. We used transfer learning 
to train each of these models with our data, to fine tune them with the task of classifying EM rashes. We used the loss 
optimizer Adam (with an initial learning rate of 0.00001), along with the binary cross entropy loss function for all of 
our DCNNs. During training, we also used an early stopping approach which would stop the training process after 20 
epochs if the validation set accuracy did not improve. Additionally, the learning rate would be decreased by a factor 
of 0.8 if the loss loss did not reduce in 5 epochs. Moreover, a dropout of 0.5 was initiated in the compilation of the 
model to prevent overfitting. 
 
Implementation 
 
We aim to convert the trained model into a format which can be stored locally on a mobile device, allowing users to 
diagnose rashes without a stable internet connection. We first converted the h5 file produced after training into a tflite 
file. To do this, we used the TensorFlow Lite Converter class in the Keras package. The tflite file has many advantages 
over the h5 file; namely, the tflite file is much smaller than the h5 file which allows it to be stored on a mobile device. 
This is necessary as the Google Play Store enforces a maximum app size of 100 MB. However, decreasing the storage 
space for a model results in accuracy of the model being degraded. To circumvent this issue, we utilized post-training 
quantization, specifically dynamic range quantization, to decrease the size of the model while simultaneously retaining 
the accuracy.  

Using the tflite file produced earlier, we then created both a website and an app which used the model. Re-
purposed codelabs were used to create both the app and the website [[19], [20]]. By substituting our .tflite file with 
those found in the shell code, we were able to create a simple yet effective implementation of the model.  
 

Results 
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Figure 1 plots the training and validation accuracy of the model. For the two-class classification problem, the 
model had a peak training accuracy of 92 percent and a peak validation accuracy of 95 percent, but 93 was the most 
consistent high. One interesting point to note is how validation accuracy appears to be equal to, if not better, than the 
training cases at most points. This is most likely caused due to the use of a dropout of 0.5 when training the model. 
The model nearly always outperforms traditional clinician accuracy, which was found to be approximately 80% [13].  

Figure 2 shows the AUC value of the model as a function of the number of epochs. AUC is a measure of the 
ability of a classifier to distinguish between classes and is used as a summary of the ROC curve. The higher the AUC, 
the better the performance of the model at distinguishing between the positive and negative classes. An AUC value of 
approximately 0.5 means that the model has no discriminatory ability, while a value above 0.5 indicates that the model 
is able to distinguish between the classes effectively. Our model has a maximum AUC of approximately 0.93, which 
is considered excellent [26].  

The validation and training loss of the model is shown in Figure 3. Both the validation and training loss of 
the model fell to around 0.25 at the maximum number of epochs.This value was used to determine when to stop the 
training of the model. In this case, we stopped training the model at around 300 epochs as accuracy failed to signifi-
cantly improve at that point. 
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Figures 4, 5, and 6 plot the accuracy, loss, and the area under the curve values for the mobileNet model. As 
you can see, the ResNet50 model nearly always outperforms the mobileNet model in every measure.  

 
 

Finally, figures 7, 8, and 9 plot the metrics for the NASNetLarge models. Unlike the other two models, the 
NASNetLarge model peaks at only an 85% accuracy. Training of the NASNetLarge model also ended much earlier 
than the other models, with only 140 epochs compared to the 175 of the mobileNet model and the 300+ of the 
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ResNet50 model. As both the mobileNet and NASNetLarge models fail to outperform the ResNet50 models on these 
benchmarks, the ResNet50 model was chosen to be implemented into an app. 
 

 
 

The confusion matrix for the ResNet50 model is displayed above. A majority of the classifications were true 
positives or true negatives. Accuracy was 91.95% and the Matthews Correlation Coefficient was 0.8391. These results 
show that the model matches or outperforms clinicians when diagnosing EM rashes.  
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Figures 10 and 11 show the home screen of the app implementation of the model. The app itself is quite 
simple, and is designed this way to make it as easy as possible to diagnose a rash. The two buttons at the top allow 
users to either take a photo of the rash using their camera, or upload an image from the gallery. After selecting an 
image, the tflite model within the device classifies the image. Results are displayed at the bottom, alongside a measure 
of how long it took for the model to classify the image. By clicking the “next” button, users are shown a variety of 
screens informing them regarding EM rashes and how the app works. Once again, this app was built as a testing 
platform. We are currently working on ways to improve the user experience and the accuracy of the model within the 
device.  
 

Discussion & Conclusion 
 
This study yielded promising results for the implementation of machine learning models into a mobile app for the 
early diagnosis of Lyme disease. Results indicated that the model has a high accuracy when diagnosing between EM 
and confounding rashes. However, the model had trouble properly classifying certain images of bare skin, which most 
likely resulted from a disproportionate ratio of skin data. Furthermore, like other studies, our model faced issues when 
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identifying EM rashes in darker skin tones. Once again, this is most likely due to the lack of sufficient training data 
containing images of EM rashes on dark skinned individuals. 

We believe that this study lays the groundwork for future studies examining the implementation of DCNNs 
into mobile applications. There exist several avenues for further research into the field. Firstly, a publicly available 
dataset of EM rash images needs to be created. While this study and other similar studies use data collected from 
online sources, research into this field would be greatly benefitted from a large, central database of curated EM rash 
images available for all researchers. Next, future studies could examine debiasing the data to create a more general-
izable dataset, given the problem of low accuracy on darker skinned images. This could potentially be achieved by 
using variational autoencoders (VAE) or simply having more data of the sort. Finally, while we have been able to 
implement our DCNN into a mobile app, this process could be done in a more efficient manner which would preserve 
the accuracy of the DCNN. We utilized post training quantization as a method to reduce the size of the model so that 
it could fit better into an app. Future studies may examine other methods of reducing the size of the model, so that 
more accuracy is retained.  
5.1 Conclusion 

We created a DCNN for EM rash classification and implemented it into a mobile application. Our results 
show that this DCNN is highly accurate when diagnosing between EM and non-EM rashes, but struggles when diag-
nosing dark skin. With more training data, this application could have many uses in the medical field. For example, 
patients could be prescreened by this application prior to seeing a clinician. While future research into the field is 
necessary, this study and other similar studies lay the groundwork for the use of machine learning in Lyme disease 
diagnosis.  
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