
 

   

A Novel Thermoplasmonic Paint with Titanium Nitride 
Nanoparticles

Rhiaan Jhaveri1 and Ravi Mariwala# 

1Dhirubhai Ambani International School, Bandra (East), Mumbai, India 
#Advisor 

ABSTRACT 

Several studies have reported the photothermal heating of colloidal nanoparticles due to plasmon-enhanced light ab-
sorption, and Titanium Nitride has emerged as a promising nanomaterial for the practical application of this phenom-
enon. Here, we developed a novel paint that is infused with Titanium Nitride nanoparticles. Varying concentrations 
of this paint were applied to copper plates and tested under natural light. Substantial heating was observed under both 
high-grade and low-grade light for the higher concentrations. The uses of this source of heat extend to long-term 
solutions for reducing the prevalence of waterborne diseases in remote, rural settings via pasteurization. 

Introduction 

Interaction of light with metal nanoparticles / Thermoplasmonics 

The novel field of thermoplasmonics has been a growing interest in recent years due to its wide range of applications, 
including in drug delivery, cancer treatment, and photovoltaic cells. There have also been breakthroughs by companies 
such as Syzygy Plasmonics in the photocatalysis of chemical reactions, driven by hot-carriers [1]. The underlying 
principle consists of photoexcitation, which is the wavelength-dependent absorption of light by an electron. [2] 
Due to the existence of discrete quantized energy levels, photons may be absorbed when they possess energy equal to 
the energy between the ground and excited state of an electron, leading to the excitation of an electron (or conversely, 
a photon may be emitted and an excited species may go to a lower energy level). Generally, the energy of a photon is 
governed by the well-known equations: 

𝐸𝐸 = ℎ𝜈𝜈 

𝜈𝜈 =
𝑐𝑐
𝜆𝜆

However, because the transition of electrons can be combined with vibrational transitions, materials generally 
can absorb continuous spectra of wavelengths. 

This interaction, however, changes at the nanoscale. All photons incident on a nanoparticle (NP) are either 
scattered or absorbed. When NPs of certain sizes, shapes and material are struck by electromagnetic radiation of a 
frequency which matches the natural frequency at which their surface electrons oscillate, they exhibit local surface 
plasmon resonance (LSPR). In these NPs, for example gold, LSPR allows for a much higher light absorption cross-
section than is usually possible. Additionally, at the nanoscale, the work function of metals increases, due to which 
electrons can be excited to a broader range of energy levels without escaping confinement. Thus, electrons relax to 
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lower energy levels, electron-electron heat transfer occurs, and heat is eventually transferred by conduction to the 
surrounding medium. This phenomenon of plasmon-enhanced light absorption and subsequent local heating has de-
veloped into one of the major sub-fields in plasmonics, termed as plasmonic heating or 'thermoplasmonics' [3]. 
Generally, for spherical thermoplasmonic NPs in a uniform surrounding medium, the actual temperature increase is 
given by: 
 

𝑇𝑇𝑁𝑁𝑁𝑁 =
𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼

4𝜋𝜋 ∙ 𝑘𝑘𝑎𝑎𝑎𝑎
 

 
Where 𝑎𝑎 is the radius of a single spherical NP, 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 is the absorption cross-section (proportional to volume), 

𝐼𝐼 is the light intensity (power per unit area), and 𝑘𝑘𝑎𝑎 is the thermal conductivity of the surrounding medium. 
 
Optimisation for Solar Energy 
 
When considering the most favourable metal nanoparticles for use in solar energy conversion, a number of species 
have been proven to be better than others. These involve single-walled carbon nanotubes (SWCNTs) [4], Gold nano-
spheres [5], and tungsten nitride [6]. More recently, Titanium Nitride (TiN) has emerged as an alternative to metal 
nanoparticles. Gold NPs are well-known to support localized surface plasmon resonances (LSPRs), which enhance 
both scattering and absorption. However, TiN NPs are of particular interest due to their relatively easy availability for 
commercial applications and their stability under high temperatures and extended periods of time, which prevents 
them from photo-bleaching, unlike other NPs. More significantly, TiN NPs exhibit a broad absorption spectrum with 
a peak in the visible and near-infrared (NIR) range, which coincides with the peak of the solar emission spectrum [7].  
The absorption cross-section for TiN NPs of 50 nm has been experimentally determined to be near-unity for light of 
wavelengths around 750 nm [8]. At its maximum, the sun's intensity is around 1380 𝑊𝑊 ∙ 𝑚𝑚−1𝐾𝐾−1. A thin coating of 
enamel paint has a thermal conductivity of 0.2 𝑊𝑊 ∙ 𝑚𝑚−1𝐾𝐾−1. Thus, increase in local temperature for a single TiN NP 
can be calculated using the aforementioned formula: 
 

𝑇𝑇𝑁𝑁𝑁𝑁 =
1 ∙ 1380

4𝜋𝜋 ∙ 0.2 ∙ 50
= 11.0℃ 

 
Absorption Efficiencies 
 
The superior absorption of sunlight by TiN can be confirmed by its performance in the colloidal form, in which it has 
an integrated absorption efficiency of approximately double that of gold or carbon NPs and shows a 2-4 times higher 
rate of temperature increase than carbon NPs [9]. 

In the present work, we seek to formulate a new type of paint that contains TiN nanopowder for use in solar-
absorbing applications and to facilitate the enhanced heating of a metal substrate. This paint would contain colloidal 
TiN and hence retain its LSPR-related properties, and would be black to retain absorption of sunlight in the visible 
and NIR regions. It would be preferable to have maximum TiN NPs on the surface, to be exposed to sunlight. 
 

Materials and Methods 
 
TiN nanopowder of average particle size 40-50 nm was selected for the preparation of the paint. The nanopowder was 
purchased directly from a manufacturer and was synthesized by co-precipitation, with purity 99.9%. Different masses 
of NPs (0.2g, 0.5g and 1g) were evenly dispersed in 2ml of turpentine to prevent coagulation and clumping. This was 
then mixed in 8ml of industrial-grade black enamel paint which was used to double-coat 5𝑐𝑐𝑚𝑚 × 5𝑐𝑐𝑚𝑚 copper plates. 
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One copper plate was coated in black paint without TiN NPs to serve as the control. The resultant mixtures were thus 
of concentrations (g/ml expressed as % v/w): 2%, 5%, 10% and 0% (control). 
The coated plates were placed in natural sunlight. Temperature was measured using Type-K surface thermocouple 
probes which were adhesive and were stuck to the bottom surface of the copper plates. Excluding the top, painted 
portion, the rest of the plate was surrounded in glass wool (with thickness ~3 inches) for thermal insulation. Wind was 
kept out using a plastic draught shield.  

The experiment was carried out in two types of lighting conditions: low-grade light of ~40,000 lux (7:00 - 
9:15 AM) and high-grade light of ~80,000 lux (10:20 -11:50 AM). To see the full effect of low-grade light, the time 
was extended. 
 

Results and Analysis 
 
The four different measured temperatures were averaged across 3 trials for each concentration of TiN NPs in paint. 
These mean concentrations were plotted against time, once for high-grade light and once for low-grade. The maximum 
temperatures reached were also plotted against concentration. Lastly, the temperature changes relative to the control 
(in %) was plotted as a function of time. 
 
High-grade light 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Temperature vs time for different concentrations of Titanium Nitride nanoparticles under high-grade light 
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Fig. 2. Maxima of averaged temperatures for different concentrations under high-grade light 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Percentage change in temperature relative to control under high-grade light 
 

As can be seen in Figure 1, when left under high-grade sunlight, all 4 concentrations undergo, at first, a steep 
rise in temperature. For around the first 4 minutes, the 4 concentrations each have almost a constant rate of temperature 
increase of 10.8 ℃/sec. This rate undergoes a gradual decrease across the 4 concentrations, and around 43 ℃, a distinct 
separation is seen between the graphs of the 0 and 2 % w.v. concentrations and the 5 and 10 % w.v. concentrations.  
The separation becomes gradually more pronounced, and is at its maximum when there is a difference of ~2.5℃ at 
around 10:38, - just minutes away from the overall peak time of each of the 4 concentrations. At 10:40 (20 minutes 
in), all four concentrations reach their maximums. This is depicted in Figure 2 - we can see that the maxima for the 
10% and 5% concentrations are nearly the same: 57.8 and 57.9 ℃ respectively, whereas for 2% and 0%, they are 55.8 
and 55.5℃.  

After the peak, this trend nearly reverses - the separation decreases till the 4 concentrations almost merge; 
this is also observed in Figure 3, where the % change relative to the control after 65 minutes (11:25) is <1% Although 
a ‘secondary peak’ is reached at 11:30 in Figure 1, this can be disregarded due to the information in Figure 3, from 
which we can deduce that this peak is probably due to ambient temperature changes and not plasmonic heating. The 
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only ‘true’ peak that we can attribute to plasmonic heating is the primary one (10:40), since it is here that we observe 
the highest relative increases of >4%.  

Moreover, we can confirm the presence of some thermoplasmonic heating in the 5% and 10% plates by 
studying the slopes of their graphs in Figure 3. After the peak, the slopes of all three graphs are roughly the same in 
magnitude, and negative - this indicates consistent loss of heat over an extended period of time, till the temperature of 
the control is reached. Thus, we see the presence of excess heat in these two plates, formed rapidly within the first 20 
minutes and eventually lost to the surroundings, and this could be due to the gradual dissipation of localised heat from 
the NPs. 
It is also important to note that the 2% concentration is consistently lower than the other temperatures from 10:46 to 
the end of the experiment. The difference is more anomalous towards the end, however, when three of the other 
concentrations, including the control, merge into a single temperature while the 2% concentration is about a degree 
lower. This could be attributed to some sort of systematic error with the insulation.  
 
Low-grade light 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Temperature vs time for different concentrations of Titanium Nitride nanoparticles under low-grade light 
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Fig. 5. Maxima of averaged temperatures for different concentrations under low-grade light 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Percentage change in temperature relative to control under low-grade light 
 

Investigating the same concentrations of paint under low-grade light yields both similarities and differences 
in observations. 

Like in high-grade light, a distinct separation is seen between the graphs of the 0 and 2 % w.v. concentrations 
and the 5 and 10 % w.v. concentrations in Figure 4. However, this separation begins just 3 minutes in, becomes 
gradually more pronounced, and is consistent till the end. The separation is at its maximum when there is a difference 
of ~3.5℃ at 9:09. Additionally, the slope of each graph in Figure 4 - and hence the rate of temperature increase - is 
lower than the initial slopes in Figure 1, which is expected from low-grade light.  

We can observe a primary peak at 9:10/130 minutes, a secondary peak at 8:24/84 minutes, and many more 
sub-peaks. Once again, the 2% concentration is partially anomalous, because as seen in Figure 6, there is a negative 
change relative to the control - yet, this does not affect the distinct difference between the maxima of 0%, 2% and 5%, 
10%, which are well outside the limits of experimental error in Figure 5. 

Hence for low-grade light, we note more gradual, sustained heating over a larger period of time (135 
minutes). This is confirmed in Figure 6, which depicts the 5% and 10% concentrations as consistently higher than the 
control, and amongst themselves some crossing and variance that can be attributed, with certainty, to fluctuations in 
ambient temperature and/or lighting, since the trend is followed by each graph. When considering the slope of graphs 
in Figure 6, we see that low-grade light produces temperatures that gradually increase, but rarely dissipate, unlike for 
high-grade light in which the peak was followed by a steady emission of radiation. This could be because low-grade 
light enables the NPs to release localised heat incrementally. 
 

Discussion and Conclusion 
 
From the quantitative analysis, it is evident that the thermoplasmonic effect exists under both high-grade and low-
grade light: for low-grade light, sustained periods of time result in gradual heating. Additionally, the 2% concentration 
paint displayed almost no heating relative to the control - this could be because the quantity of TiN nanopowder, 0.2g, 
was not sufficient enough to be even partially exposed to the surface of the metal substrate. This could be eliminated 
with not only higher concentrations of the nanopowder in paint, but also methods such as laboratory spin-coating to 
cover the substrate (albeit unsuitable for practical, large-scale applications of paint), or the sonication of the colloidal 
NPs to ensure an even spread of them on the substrate, in order to maximise their surface area. 
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Nevertheless, the formulation of a ‘thermoplasmonic paint’ with significant photo-thermal properties has 

been shown. This type of paint exhibits a heating time of approximately 2 hours to reach a maximum; thus, its appli-
cations may be especially seen in the usage of low-grade thermal energy by conductive surfaces (since the present 
investigation uses a coated metal substrate as a transducer of heat.  

A thermoplasmonic paint-enabled solar cell could be used in spacecraft and space exploration vehicles. This 
energy source seems to be a suitable substitute for radioisotope thermoelectric generators (RTGs), which were used 
in the NASA Voyager probes [10], and have also been included in realistic proposals for interstellar probes by NASA 
[11]. These are nuclear batteries used in low-maintenance, low-power situations for durations too long and impractical 
for traditional fuel cells or solar cells. The stability over time, as well as resistance to photo-decay of TiN is an added 
benefit to such an energy source. Thermoplasmonic paint will also eliminate the safety hazards associated with the 
radioactive materials in RTGs, and hence is a lucrative alternative [12]. 

Terrestrially, too, thermoplasmonic paint is a possible substitute for some solar applications. As the experi-
ment has shown, especially in the case of low-grade light, due to the continuously high relative temperature and its 
incremental release to the surroundings, TiN NPs may be useful in the immediate storage and release of thermal energy 
to the surroundings, which is a feature that photovoltaics falls short in, as there is an inevitable loss of thermal energy 
when energy is converted from one form to another and back (solar energy converts light energy to electric and sub-
sequently chemical energy, and reverts this when energy is required to be drawn from batteries). Thermoplasmonic 
paint eliminates this and offers a direct photo-thermal effect, bypassing peripheral losses of energy. However, one 
shortcoming (in the paint as well as in the general domain of thermoplasmonics) is that the energy cannot be drawn 
and utilized in a controlled, deliberate manner yet. 

With the above-mentioned characteristics of the thermoplasmonic paint in mind, another realistic application 
may be in the process of pasteurisation and water disinfection. Pasteurisation of water occurs when its temperature is 
raised to 65 ℃ for 3 minutes [13]. As evidenced by the experiment, the thermoplasmonic paint can sustain heating for 
periods much larger than 3 minutes, and is capable of reaching temperatures ~60 ℃ with a 5-10% concentration; thus, 
it is hypothesised that at slightly higher concentrations, solar disinfection (SODIS) would be possible. Also, one pro-
cess of pasteurising fluids such as water involves the passing of water through ‘plate heat-exchangers’, which are 
essentially thin metal plates with temperatures of low magnitudes [14]. This is almost exactly replicable by the current 
experimental setup, wherein thin metal plates have been used, and this could result in a significant carbon reduction 
from existing energy-intensive heat-exchanger systems. 

Thus, theoretically, clean water can be produced at a near-continuous rate after prior heating of the plates to 
the optimum temperature, which would be extremely beneficial to rural areas and villages with lack of access to safe 
potable water and who receive sufficient sunlight, because while pasteurisation does not sterilise water, it reduces the 
number of pathogens by many orders of magnitude and hence can reduce the incidence of water-borne diseases by 
35-40% [15]. Since this method works in low-grade light, water disinfection could be available to the people from 
~07:00 to evening-time. The low maintenance associated with thermoplasmonic paint, in addition to the other ad-
vantages, makes this a seemingly sustainable and long-term solution. 
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