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ABSTRACT 

When creating text transcripts from spoken audio, Automatic Speech Recognition (ASR) systems need to infer 
appropriate punctuation in order to make the transcription more readable. This task, known as punctuation restoration, 
is challenging since punctuation is not explicitly stated in speech. Most recent works framed punctuation restoration 
as a classification task and used pre-trained encoder-based transformers, such as BERT, to perform it. In this work, 
we present an alternative approach, framing punctuation restoration as a sequence-to-sequence task and using T5, a 
pretrained encoder-decoder transformer model, as the basis of our implementation. Training our model on IWSLT 
2012, a common punctuation restoration benchmark, we find its performance is comparable to state of the art 
classification-based systems with an F1 score of 80.7 on the test set. Furthermore, we argue that our approach might 
be more flexible in its ability to adapt to more complex types of outputs, such as predicting more than one punctuation 
mark in a row. 

Introduction 

Automatic speech recognition (ASR) is used in various applications, such as the preparation of medical reports, hands-
free typing of documents, implementation of voice-based user interfaces and virtual assistants, automatic transcription 
of videos/lectures, and accessibility tools. The field of ASR has seen massive progress in recent years. State of the art 
(SOTA) models, such as Wav2Vec 2.0 (Baevski et al. 2020), have achieved extremely low word error rates (WER) 
on ASR benchmarks such as “TIMIT” (Garofolo et al. 1993) and “LibriSpeech” (Panayotov et al. 2015), measured at 
8% and 1.4% Word Error Rates (WER), respectively. WER counts the percentage of erroneous substitutions, 
deletions, and insertions of words in an ASR-generated transcript. While word accuracy is important for a quality 
transcript, missing punctuation, not evaluated in WER metrics, has been shown to impact readability just as much as 
word errors (Tündik et al. 2018). Due to the fact that punctuation is less explicitly indicated in speech, it is typically 
inferred from context and has been addressed using different approaches. This task is known as punctuation 
restoration. 

Previous research on punctuation restoration has utilized Recurrent Neural Network (RNN) architectures 
(Tilk and Alumäe 2016), and LSTMs (Tilk and Alumäe 2015), while most recent attempts have focused on using 
transformer models (Nagy et al. 2021), due to their superior performance. Specifically, pretrained contextualized 
language models, such as BERT (Devlin et al. 2018), fine-tuned on the punctuation restoration task, have yielded state 
of the art performance (Courtland et al., 2020). 

Common to most of the recent work is the framing of punctuation restoration as a classification task, where 
a single punctuation mark is predicted for every position in the input text. In contrast, in this paper, we frame the task 
as a textual sequence-to-sequence task applying pre-trained seq2seq transformer models, specifically Google’s T5 
(Raffel et al. 2020), to the punctuation restoration of speech transcripts. 
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Related work 
 
Early punctuation restoration systems relied on classical machine learning methods, such as decision trees (Kolár et 
al. 2004) and n-gram models (Gravano et al. 2009). However, these have largely been outperformed by large neural 
network models. Since the task requires a model well suited to processing sequences, with an understanding of context, 
Recurrent Neural Network (RNN) architectures have been used to restore punctuation, including RNNs with attention 
(Tilk and Alumäe 2016), and LSTMs (Tilk and Alumäe 2015). Most recent literature focuses on transformers, due to 
their superior contextual understanding and accuracy as compared to LSTMs and RNNs. Transformer encoders pre-
trained on large corpora of text, such as BERT (Devlin et al. 2018) and RoBerta (Liu et al. 2019), have obtained state-
of-the-art results in a variety of natural language tasks, and have thus been applied to punctuation restoration (Nagy 
et al. 2021, Alam et al. 2020).  

Common to most of the aforementioned models is the framing of punctuation restoration as a classification 
task, where for every position in the input text, the model makes a classification decision between one of several 
predefined classes (period, comma, question mark, none, etc.). Figure 1 illustrates this approach, where every position 
in the input is encoded by the encoder and then outputs are predicted based on that encoding. 

Previous encoder-only architectures (Nagy et al. 2021) pass this vector to a classifier, which classifies each 
token of the input as being followed by one of several punctuation types as seen in figure 1. 
 

 
Figure 1. Illustration of encoder-classifier model for punctuation restoration. 
 
In this paper, we extend this line of research, by framing punctuation restoration as a sequence-to-sequence task rather 
than classification. To do this, instead of using a single encoder, we train an encoder-decoder sequence-to-sequence 
transformer model. Our goal is to determine the efficacy of using an encoder-decoder architecture instead of an 
encoder-only system. Figure 2 illustrates the sequence-to-sequence encoder-decoder architecture used in this paper. 
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Figure 2. Illustration of encoder-decoder seq2seq model for punctuation restoration. 
 

We note that a couple of previous works used machine translation approaches to address punctuation 
restoration (Peltz et al. 2011, Vāravs and Salimbajevs 2018). Similar to this work, these past works frame the 
punctuation restoration task as a text-to-text task. However, our work is based on a simple vanilla sequence-to-
sequence architecture and newer pre-trained models that are more comparable to the models used by the recent state-
of-the-art work. 

 
Methods 
 
Model 
 
We chose to use Google’s T5 (Raffel et al. 2020), a sequence-to-sequence encoder-decoder model, to perform 
punctuation restoration. T5 uses a bi-directional transformer, similar to BERT, as its encoder, and an autoregressive 
transformer decoder. It was trained to perform seq2seq tasks on 20T of the “Colossal Clean Crawled Corpus” (Raffel 
et al. 2020). 

As illustrated in Figure 2, when fed a sequence of tokens (unpunctuated text), T5 passes the input through an 
encoder which generates a vector representation of the sequence. Then it passes that vector representation to a decoder, 
which generates an output sequence of tokens. This architecture was shown to be a good fit for various tasks from 
machine translation, to text summarization and question answering. In our case, to perform punctuation restoration, 
the input sequence is the speech transcription without punctuation, and the output sequence is a fully punctuated 
version of that input. Unlike the case of the encoder-classifier model, described in Section 2, the seq2seq architecture 
does not impose any explicit constraints on the relation between the input and the output structures. Specifically, the 
output can be of arbitrary length, seamlessly allowing the generation of two or more punctuation marks one after the 
other (as in “That is incredible!!!”). 

While T5 was originally implemented in the Mesh TensorFlow library (Shazeer et al. 2018), we utilize the 
PyTorch implementation provided in Huggingface’s transformers library (Wolf et al. 2019). 
 

Methodology 
 
We finetune the pre-trained T5 model on a dataset of Ted talk transcripts (Federico et al., 2012). The problem is 
formulated as a text-to-text task, where the input is an uncased segment of a Ted transcript devoid of punctuation, and 
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the ground truth output is the original punctuated text (also uncased), as illustrated in Table 1. The text was broken 
into 256-token long sequences. In order to most closely resemble the data T5 was pre-trained on (leveraging the 
information it learned during training), we frame the task as sequence to sequence, keeping the original tokens used 
for each punctuation character. 
 
Table 1. A shortened example of the input-output pairs fed into the model during training. 
 

Input we know that right we've experienced that 

Ground truth output we know that, right? we've experienced that. 

 
Experimental Details 
 
Datasets 
We trained on the IWSLT 2012 English Ted Talk dataset (Federico et al., 2012). This dataset is commonly used as a 
benchmark for punctuation restoration models. It comprises 1,066 transcripts of Ted talks, and 2.4M words in total 
and is split into a 2.1M word training set (87.5%), a 296K validation set (12.3%), and a 12K word test set (0.5%). 
We used this original split in our experiments. Table 2 shows the distribution of labels in this dataset. 
 
Table 2. Distributions of labels of in IWSLT 2012 the dataset. 
  

Train Validation Test 
Period (.) 139,619 909 1,100 
Comma (,) 188,165 1,225 1,210 
Question mark (?) 10,215 71 46 
None (Word not followed 
by punctuation) 

2,001,462 15,141 16,208 

 
Training 
 
We perform gradient descent using the Adafactor optimizer (Shazeer and Stern 2018) used for fine tuning in the T5 
paper (Raffel et al. 2020), with a learning rate of 3E-4 and weight decay of 0.1 utilizing cross-entropy as the loss 
function. Of the 5 variants of T5 released by Google, we only fine tune the 3 smallest as seen in Table 3. For the T5-
small and T5-base model we use a batch size of 16, while a batch size of 12 is used for T5-large, due to limitations in 
GPU memory (VRAM). Gradient checkpointing (Rajbhandari et al., 2019) was also used to reduce VRAM 
requirements on large model training. Training continued until a minimal loss was achieved on the validation set. All 
experiments were conducted on an NVIDIA Tesla P100 GPU. 
 
Table 3. Parameter count for T5 variants used in this paper 
 

T5 variant        Parameter count (approximate) 

T5-small 60M 

T5-base 220M 
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T5-large 770M 

 
Evaluation 
 
The test set was split into 50 batches and fed into the model. Following previous work (Courtland et al., 2020, Nagy 
et al. 2021), the output was evaluated with an F1-score over 3 classes (comma, period, question mark). As a baseline, 
we show the results of Courtland et al., 2020, a BERT-based encoder model, which is considered state of the art for 
this dataset. The model they use has 110 million parameters, which is in between our T5-small and T5-base. 
 
The results are reported in Table 4, showing our T5-base and T5-large models with an overall performance that is 
comparable or slightly better than the BERT baseline. 

 
Results 
 
Table 4.  Precision, recall, and F1-score on the IWSLT 2012 Ted dataset 
 

 Period (.) Comma (,) Question mark (?) Overall 
 P R F1 P R F1 P R F1 P R F1s 
BERT-base (Courtland et al., 
2020) 

72.8 70.8 71.8 81.9 86.4 80.8 80.8 91.3 85.7 78.5 82.9 80.6 

BERT-base-uncased (Nagy 
et al. 2021) 

59 80.2 68 83 83.6 83.3 87.8 83.7 85.7 76.6 82.5 79 

Albert-base (Nagy et al. 
2021) 

55.3 74.8 63.6 76.8 87.9 82 70.6 83.7 76.6 67.6 82.1 74.1 

T5-small 77.9 83.2 80.5 72.9 55.5 63 70.7 74.4 72.5 75.6 69.3 72.4 
T5-base 84.8 89.2 86.9 78.3 70.8 74.4 67.3 84.6 75 81.3 80.1 80.7 
T5-large 86.8 90 88.4 77.3 73.2 75.2 78.3 92.3 84.7 82.1 81.8 82 

 
Figure 3 shows a confusion matrix between the different classes (‘NONE’ means predicting that no 

punctuation mark is required). Interestingly, it shows that one of the common mistakes that the model makes is with 
the placement of commas, which is typically challenging for humans as well. 
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Figure 3. Confusion matrix for T5-base evaluated on the IWSLT 2012 test set. 
 

Error Analysis 
 
Table 5 shows a few examples of prediction errors made by our model. Example 1 and 2 illustrate cases where it is 
not clear that the model output is in fact wrong. Example 3 shows an unusual sentence that is arguably harder for the 
model and example 4 shows a mistake in a more common looking text. 
 
Table 5. Examples of model errors. Disparities between the original and the model prediction are marked with square 
brackets. 
 

 Ground truth Model output 

1 the space they create in the middle creates a new 
shape[,] the answer to the sum. 

the space they create in the middle creates a new 
shape[.] the answer to the sum. 

2 what about bigger numbers? well[] you cannot get 
much 

what about bigger numbers? well[,] you cannot get 
much 

3 school taught you to do math[,] i'm sure[.] it's 16[,] 
16[,] 16[,] 48, 4,800, 4,000 

school taught you to do math[.] i'm sure[] it's 16[] 
16[] 16[.] 48, 4,800, 4000 

4 and so we got to the grave and made this, which was 
hilarious[,] the attention that we got. 

and so we got to the grave and made this, which was 
hilarious[.] the attention that we got. 

 

Conclusion and Future Work 
 
In this work, we demonstrate how seq2seq encoder-decoder transformer models, such as T5, can be used for 
punctuation restoration. Testing a fine-tuned model on the IWSLT 2012 benchmark, we find its performance 
comparable to the state-of-the-art.  
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The flexibility of the seq2seq architecture allows our model to seamlessly predict more than a single 
punctuation mark in a row, such as an ellipsis (...), an interrobang (!?), or when trying to restore additional types of 
punctuation marks, such as quotation marks or parentheses, as in (.”). We believe that a benchmark that covers these 
types of punctuation, would be useful to evaluate punctuation restoration models but leave that as future work. 
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