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ABSTRACT 

A mathematical model is a method to represent real world problems using mathematical terms like equations and 
formulas. In the medical sphere, these models are used to prevent, predict, or avoid these diseases. Devastating epi-
demics are inevitable due to the increase of global travel and urbanization which both contribute increasing points of 
contact for diseases to spread. In order to combat the spread of infectious diseases, scientists from a combination of 
fields have started to develop mathematical models to represent these diseases. With computer models and applied 
mathematics, one can predict and control various diseases. We present the evolution and implementation of different 
models used in mathematical modelling as well as a demonstration of the SIR model in MATLAB. 

Introduction 

The WHO estimates that 2030-2050 an additional 250,000 people will die due to infectious diseases specifically be-
cause of climate change. This is because of increased flooding created by climate change that breeds diseases like 
cholera and other diarrhoeal diseases.¹ Some other reasons that explain why epidemics are unpreventable are because 
of increased contact between animals and humans, similar to the cause of COVID-19 but is also applicable in the case 
of factory farming in the US, and a health worker shortage caused by a major exodus of doctors and nurses in third 
world countries like Africa and Asia.¹ It is clear that governments and corporations will continue innovating technol-
ogy to combat these diseases similar to the international vaccine effort of 2021. Yet, reality warns humanity that the 
next pandemic will be more deadly than the previous one, so the question is not how can we prevent the next epidemic 
but instead how to analyze the disease so scientists understand how the disease will spread, its mortality rate, how 
many waves to expect, and what governmental policy is necessary in order to protect citizens. So, it is already clearly 
established that epidemics are not only costly in terms of human life but also a threat to the international economy. 
The effects of such epidemics include the closure of business, schools, markets, preventing traveling for leisure, in-
termingling, and implementing curfews and lockdown.¹ A reduction of these harms is only possible through under-
standing the disease and implementing countermeasures. Mathematical modelling of diseases and developing stronger 
global surveillance methods is clearly the way to ensure the smallest loss of lives due to future inevitable epidemics. 

Background 

History 

History has been seriously affected by outbreaks and pandemics from the beginning of time. In fact, the first recorded 
major pandemic was in 430 BCE Athens during the Peloponnesian War.² But the first paper discussing mathematical 
modelling of diseases was in 1766 by a scientist of the name Daniel Bernoulli. In his groundbreaking paper Essai 
d'une nouvelle analyze de la mortalité causée par la petite vérole, he talked about the outbreak of smallpox in England 
and created the first model based on math that calculated the mortality rate of smallpox.³ Despite various mathemati-
cians like Lampert and Laplace referencing similar methods to Bernoulli, mathematical modelling of diseases only 
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started again in 1911 by Ross to study “discrete-time dynamics of malaria through the mosquito-borne pathogen trans-
mission”.⁹ He was the first to address mass- action incidents (“rate at which an infection passes in a population is 
proportional jointly to the product of the number of persons I who are infectious and the number of persons S who are 
susceptible to the infection C = rIS”⁴) and this was later created into the Law of Mass Action coined by Guldberg and 
Waage in 1864 which was later christened the SIR model since it would mean that a person’s contact would randomly 
spread throughout.⁹ Although separate from the SIR model, another model that came about in 1928 by W. H Frost 
was the Reed- Frost chain binomial model that rather than assuming homogeneous mixing instead believed that in-
fection spread between people through discrete time Markov chain events (non-coincidental chronological events)⁵ 
and this became mainstream known as stochastic epidemic modeling.⁹ 
 
Common Terms in Mathematical Modelling 
 
Before statistical models are created for particular diseases, first transmission models are made to help understand the 
pattern and evolution of transmission between various individuals. So for most infections (ie. influenza, smallpox, 
malaria) people can be put into three categories: “susceptible,” “infected”, or “recovered and immune.”⁶ There are 
still various nuances in these four categories since an exposed individual (infected) may not be capable of spreading 
the diseases, so we call these latent cases. Also, there are three main periods of time between the exposure of the 
disease, the transmission, and the later infectiousness.⁶ In the latent period, the individual doesn't pass on the disease. 
The incubation period is the time between exposure to the disease and then the biological response to the infection. 
There are special cases where a person can transmit the disease before symptoms are felt and in those cases mathe-
matical models must be adapted.⁶ Finally, the infection period is when the infected person can transmit the disease.⁶ 
Next, we have primary cases which are the first people in an outbreak and the secondary cases and the average number 
of people a single primary case can infect is known as the reproduction number, denoted with the letter R. So, in order 
for the pandemic to end, the last known case must not reach out to any susceptible individuals, meaning R < 1. The 
infection attack rate (A) is the random number of individuals that come in contact with the disease. Finally, the expo-
nential growth rate of infected individuals is defined as r and it is determined with the timeline for infection which is 
different for each disease.⁶ In order to shape public policy of disease control like border control using mathematical 
models it is key that these variables be as close as possible to their true value. 
 

Methods to Modelling 
 
Statistical-Based Model 
 
The first method, which is also one of the first methods created, includes mostly statistical methods for surveillance 
of outbreaks. An example of this would be a regression method, which focuses on the statistics and timeline of reported 
infected cases from when diseases weren’t there. A basic regression model is shown below: 

 
Where θ is a linear function of time (t), the coefficients are determined by parameter identification techniques, 

and e(t) is the “noise” which is estimated from the time-series. Another example of a statistical based model, are the 
Hidden Markov models (HMM). This particular model is very unique for it allows scientists to model for diseases 
that don’t have specific parameters. For example, Johne’s disease passes its infection through animals’ feces but the 
amount of MAP (Mycobacterium avium subsp. paratuberculosi)- an enteritis that leads to diarrhea- in each varies and 
the disease progression has not one but two distinct patterns.⁷ Specifically, what makes Johne’s disease hard to model 
is that it is a slowly progressing disease so the parameters on the rate of infection or recovery are hard to process. So, 
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in order to fix this problem HMM’s eliminate the parameters using machine learning to estimate them like a disease 
state transition rate.⁷ 

 

Empirical/Machine Learning-Based Model 
 
The second model comes from machine learning for predicting how an ongoing epidemic will spread and this would 
include online data mining for information and statistics and surveillance networks. One common technique that 
comes under this type of model is data that comes from communication platforms and search engines. This means 
“surveys, administrative data (including vital registration data, census data, epidemiological, and/or demographic sur-
veillance data), hospital data, insurance claims data, disease registries, and other related sources” are all used in order 
to decide if an epidemic is spreading. BioBERT is a “contextualized word representation model” that can understand 
what a text is saying and the context behind it.⁸ BioBERT can specifically understand articles related to the biomedical 
science (ie. NCBI, PubMED, and more).⁸ An example of where this might be applicable is that BioBERT can under-
stand the circumstances needed for a disease to happen like overcrowding or warfare, and then can search for where 
circumstances like that can be happening.⁸ BioBERT has been particularly useful when predicting for previously 
unseen countries and is consistent across all age groups. However one common issue with these types of techniques 
is that they require lots of data set training in order to get proper results.⁸ Another application of a machine learning 
based model is that Hulth et al. (2009) model processed information coming from a Swedish website related to influ-
enza  between 2005-7. By comparing the amount of information from the website and the number of verified influenza 
cases at the time, the model was able to calculate the spread of the outbreak and predict where it would spread next. 
¹° 
Mathematical/Mechanistic State-Space Models (SIR Model) 
 
The third mathematical model and the most commonly used is the state-space model that predicts how “hypothetical” 
epidemics spread. The most simple of these methods is the SIR model without considering demographics that might 
make certain individuals more susceptible to a disease. The SIR method focuses on the transition of states that indi-
viduals will go through modeled by differential equations. The S in SIR stands for the group of individuals vulnerable 
to the disease, I stands for those infected, and the R represents the people who leave the process through recovery. N, 
which is not in the acronym, is the total number of individuals in the population; this means that N= S+ I+ R.¹⁴  It is 
important to note that an individual may leave this process at any time due to death. The differential equations that 
model the relationship between these variables are listed below.  
 

dS/dt= −incidence = −βSI/N 
dI/dt= incidence−recovery= βSI/N−γI 

dR/dt= recovery= γI 
 

The differential ( d(·)/dt) is supposed to represent the change in that particular variable over a certain period 
of time and β is the transmission rate and γ is the recovery rate. In the simplified model presented here, the inverse of 
the recovery rate would equal the average length of the period of infectiousness. Also, since we know that when t ≈ 
0, S/N ≈ 1 we can make the simplification into this equation.  
 

dI/dt=βI−γI 
 
Dividing the transmission rate (β) and the recovery rate (γ), defines a new variable as (R0) for the reproduction num-
ber. With all of these equations and established relationships, we can solve for the final prevalence equation:  I(t)=I0 
e^ γ(R0 −1)t where I0 is the initial number of infections at the beginning of the epidemic.⁹ We can rewrite this equation 
in the form I′ = γR0 I − γI and when this is added to the recovery equation one gets I′ + R′ = γR0I which leads us to 
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the final equation of incidence = γR 0 (prevalence). In this simplified explanation of the SIR model, it is important to 
note that we have omitted other facts like how the endemic state is dependent on vaccination coverage (p) and therefore 
herd immunity. More complex compartmental models include incorporating heterogeneity (the differences of a pop-
ulation ie. race) or including a continuous age structure.⁹ 
 
Example of Mathematical Modelling 
 
In order to model a hypothetical disease, I coded a simple model using MATLAB. The model is relatively simple, 
with only seven parameters: beta, gamma, delta, N, I0, T, and dt. The beta in the equation represents the rate of 
infection, the gamma represents the rate of recovery, and delta is the rate of immunity loss. N, I0, and T are all the 
same as stated in the beginning of the paper and dt is the time interval used. It is important to notice that the assump-
tions in the for loop are different from the ones in the SIR model because this model includes a new variable (delta) 
that accounts for the immunity loss. In addition, the original equations under the SIR section divide S(tt) by N however 
in this case, the units inputted already reflect this, but other than that, the equations are relatively the same. The code 
after the for loop creates the plot.¹³  
 
function [S,I,R] = sirs_model(beta,gamma,delta,N,I0,T,dt)  ¹³ 
    S=zeros(1,T/dt); 
    S(1)=N; 
    I=zeros(1,T/dt); 
    I(1)=I0; 
    R=zeros(1,T/dt); 
    for tt= 1:(T/dt)-1 
        % Equations of the model-  
        dS=(-beta*I(tt)*S(tt) + delta*R(tt)) * dt; 
        dI=(beta*I(tt)*S(tt) - gamma*I(tt)) * dt; 
        dR=(gamma*I(tt) - delta*R(tt)) * dt; 
        S(tt+1)=(S(tt)) + dS; 
        I(tt+1)=I(tt) + dI; 
        R(tt+1)=R(tt) + dR; 
    end 
    tt = 0:dt:T-dt; 
% Curve 
plot(tt,S,'b',tt,I,'r',tt,R,'g','LineWidth',2); grid on; 
xlabel('Time (Days)'); ylabel('Number of Individuals'); 
legend('S','I','R'); 
end 
sirs_model(5*10^-9, 0.12, 0.0, 6*10^7,10, 300, 1/4) 
 

By inputting 5*10^-9 for beta, .12 for gamma, 0.0 for delta, 6*10^7 as the total population, 10 as the number 
of initial infections, 300 days for time, and ¼ for T, the following graph is created.  

In the graph, we see that the susceptible population significantly decreased over time while the recovered 
population increased over time. There are no fluctuations in this graph because someone who has recovered from the 
hypothetical disease can not get it again because there is no immunity loss.  
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This condition is not very common in the real world, for example after getting vaccinations many individuals have 
been infected with COVID-19 again and although unlikely, might pass away because of it. Let’s introduce a new 
variable, delta(0.07), to add some nuance.  
In this new graph, we can see some fluctuation and the graphs for the susceptible population and  
 

 
 
the recovered population are very different from their previous one. It is important to note that this code and model is 
very simple and can by no means predict something as complex as COVID-19 because it doesn’t take into account 
various factors like age, socioeconomic status, location, and more. However, the code does give an insight on how a 
coded mathematical model can help us predict the future of an epidemic. 
 
Modelling Use in Public Policy 
 
In order to properly fight pandemics, global leaders need to enact domestic policy to curb their citizens’ “risky” be-
havior during pandemics. But to decide what policy to propose is based on mathematical modelling and extensive 
monitoring.⁹ The World Health Organization (WHO) and the Centers for Disease Control (CDC) in the US have 
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started creating a global surveillance network so sudden epidemics don’t turn into pandemics. This was useful in the 
case of AIDS, SARS (2002), the 2009 H1N1 swine flu, and COVID-19 pandemic since constant surveillance and 
contact tracing were able to ensure variables in the mathematical model were as accurate as possible.¹⁰ In fact, for the 
COVID-19 pandemic the CDC started their own forecasting for deaths, cases, and hospitalizations due to COVID. 
With this information, the CDC has “published to help people in different risk groups (like healthcare workers or older 
people) stay safe in different settings (like grocery stores, home, or school).”¹¹ In addition, it was Giordano et al. new 
SIDARTHE model that recommended and later influenced Italian policy for comprehensive testing, contact tracing, 
and minimal contact with other individuals during the COVID-19 pandemic.¹² This model was expanded by Memon 
et al. as they provided a more comprehensive SIR model which included quarantine and isolation periods and pro-
ceeded that quarantining was an effective method to prevent the spread of the disease.¹² 
 

Discussion 
 
In order to properly fight pandemics, global leaders need to enact domestic policy to curb their citizens’ “risky” be-
havior during pandemics. But to decide what policy to propose is based on mathematical modelling and extensive 
monitoring.⁹ The World Health Organization (WHO) and the Centers for Disease Control (CDC) in the US have 
started creating a global surveillance network so sudden epidemics don’t turn into pandemics. This was useful in the 
case of AIDS, SARS (2002), the 2009 H1N1 swine flu, and COVID-19 pandemic since constant surveillance and 
contact tracing were able to ensure variables in the mathematical model were as accurate as possible.⁹ In fact, for the 
COVID-19 pandemic the CDC started their own forecasting for deaths, cases, and hospitalizations due to COVID. 
With this information, the CDC has “published to help people in different risk groups (like healthcare workers or older 
people) stay safe in different settings (like grocery stores, home, or school).”¹¹ In addition, it was Giordano et al. new 
SIDARTHE model that recommended and later influenced Italian policy for comprehensive testing, contact tracing, 
and minimal contact with other individuals during the COVID-19 pandemic.¹² This model was expanded by Memon 
et al. as they provided a more comprehensive SIR model which included quarantine and isolation periods and pro-
ceeded that quarantining was an effective method to prevent the spread of the disease.¹² 
 

Conclusion 
 
From my research, I was able to examine the background of mathematical modelling of epidemiology and explore 
different models of it. In addition, I was able to create my own hypothetical model using MATLAB to model a ficti-
tious infectious disease. Finally, I was able to study the impact of such modelling in public policy in other countries 
as well as discussing further implications for newer technologies like increased surveillance.  
 

Limitations 
 
Since this is a research article, my research is limited by the data available on the web. Other than what I may not 
access, there are few limitations to my research. In addition, other limitations are created by using MATLAB since 
my research is limited to one software. 
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