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ABSTRACT 
 
In this paper, there are three major sections covered. The paper begins with the explanation of the Lidar sensor, which 
is a device that uses one or more lasers to measure distances from itself to objects in the world. Such a measurement 
can be represented as a point cloud, which is a set of (x,y,z) values for every surface that the laser(s) irradiate. Then, 
the theory of rigid transformations, including the covariance matrix, the translation matrix, and how the Singular Value 
Decomposition (SVD) can decompose the covariance matrix between two point-clouds to obtain the rotation matrix 
relating them. In addition, the concept of Iterative Closest Point (ICP) is explored and tested, along with the SVD 
algorithm, by using the Stanford bunny data sets. Finally, the ICP algorithm is used to combine two different Lidar 
scans of an office room together to see its effectiveness in a real-world environment.  
 

Introduction 
 
It was a sensational experience to watch the movie, “Ready Player One”, which is a story about people competing in 
virtual reality (VR) to inherit the VR gaming system [1]. In this film, people in 2045 are immersed in the virtual world 
to forget the pain and worries of the real world. The way that the characters blended in the world of VR being able to 
explore the details of that world fascinated spectators. Currently, the technology of VR evolves greatly and may, in 
the near future, have a direct impact on people’s lives.  

Augmented Reality (AR) and Digital Twin are representative examples of those that are being applied in 
virtual reality. In particular, the technology called Digital Twin has a great advantage in that it can perform simulations 
that cannot be executed in the real world due to reasons such as time, resources and safety by converting the environ-
ment and objects in the real world into digital data [2]. The two main ways to collect data for the Digital Twin tech-
nology is to collect the surrounding environment using photos or lasers as point data. In this paper, in particular, the 
point data collection of the surrounding environment using a laser sensor and the processing and visualization of the 
collected data will be explained. 

By using a laser scanner, also known as Lidar (Light Detection and Ranging), a scanned region can be rep-
resented in the form called a ‘point-cloud’, depicting 3D objects or space [3]. In order to completely scan the environ-
ment, the Lidar should be used in multiple locations—this will reduce ‘shadowed’ locations. ICP (Iterative Closest 
Point) algorithm is commonly used for point cloud registration, a process that matches scans measured from different 
lidar locations or orientations together [4]. The process is analogous to stitching together photographs taken at different 
locations together to form a large photo capturing a full landscape, but at a 3-dimensional scale. The registration 
process used in this paper consists of obtaining the corresponding points of two point-cloud data sets and using two 
algorithms, SVD (Singular Value Decomposition) and ICP (Iterative Closest Point), to match the two sets together 
[5]. The visualization of the resulting registration of point cloud data is included. 
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Lidar Sensor 
 
Using Lidar scanners, distances, dimensions and the returned light’s intensity can be measured—done by sending a 
laser pulse and measuring the time taken for the laser to reach a surface and return to the scanner. The distance is 
calculated by: 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡. Thus, a large point-cloud comprises a set of X, Y and Z coordi-
nates, and, in some cases, additional attributes such as intensity or colors can be obtained. Each pulse containing 
information about the environment are combined to represent the entire 3D region.  
 

 
          Figure 1. Velodyne VLP-16 Lite 

 
In this study, Velodyne’s lidar sensor, VLP-16 Lite as shown in Figure 1, which has 16 laser sensors in vertical axis 
with 30 degrees vertical view and a 360-degree horizontal scan plane was used. The main features of the VLP-16 Lite 
can be found in Table 1 [6]. 
 
Table 1. Main features of VLP-16 Lite 

Features Remarks 
Channel 16 
Wavelength 903 nm 
Ranging accuracy +/-3cm (typical) 
Measurement range Up to 100m 
Output data points 300,000 points/s 
Vertical view angle 30o(+15o to −15o) 
Horizontal view angle 360o 
Horizontal angular resolution 0.1o~0.4o 
Laser rotation frequency used in this paper 10Hz (600RPM) 
Weight 830g 
Dimension 103mm diameter x 72mm height 
Power consumption 8W (typical) 

 
The point cloud data collected by the lidar can be exported in different data format, e.g., pcap or rosbag. The 

rosbag format is commonly used in ROS (Robot Operating System). ROS is an open-source, operating system for 
robot developments that provides the services the user would expect from an operating system, including hardware 
abstraction, low-level device control, implementation of commonly-used functionality, message-passing between pro-
cesses, and package management [7]. It also provides tools and libraries for obtaining, building, writing, and running 
code across multiple computers. A detailed description on how ROS works is excluded due to the scope of this paper. 
However, it should be noted that points are innately measured in polar coordinates by the VLP-16 Lite as shown in 
Figure 2 [6]. 
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Figure 2: Lidar’s dataset coordinate system exported in ROS environment 

 
For an efficient data processing of point cloud registration, it is required to convert the dataset in polar coordinate into 
a Cartesian coordinate system. The mathematical model of VLP-16 Lite, which calculates the (x, y, z) coordinates 
from ROS environment is given as follows. 
 
Equation 1: Conversion of polar coordinate to cartesian coordinate: 

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
� = �

𝑅𝑅 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑅𝑅 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
� 

 
An example of point cloud data converted to (x, y, z) coordinate of a single data block exported from Lidar is shown 
in Figure 3. 

 
Figure 3. A point cloud set measured by one full 360-degree rotation of the VLP-16 laser sensors 
 

Rigid Transformation for Point Clouds 
 
The basic concept of point-cloud registration is to merge two or more point-cloud sets using an optimal transformation 
matrix which is a pair of rotation and translation matrices. A transformation that does not alter the size or shape of an 
object; rotations, reflections, translations are known as rigid transformations. As reflections and scaling are not applied 
in this exploration, transformations consisting of rotations and translation are considered. 

Volume 10 Issue 4 (2021) 

ISSN: 2167-1907 www.JSR.org 3



 
Figure 4. Rotation of a vector by 𝜃𝜃 in 2-D space 
 
Consider a matrix that rotates a given vector, 𝑣𝑣𝑜𝑜���⃗ , by a counterclockwise angle, 𝜃𝜃 in a fixed coordinate system. Then 
the matrix rotating 𝑣𝑣𝑜𝑜���⃗  by 𝜃𝜃 is expressed as: 
 
Equation 2: Rotation matrix for angle, 𝜃𝜃: 

𝑅𝑅𝜃𝜃 = �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � 

So, 𝑣𝑣′���⃗ = 𝑅𝑅𝜃𝜃 ∙ 𝑣𝑣𝑜𝑜���⃗ . 
 
When extending a 2-dimensional rotation matrix to a 3-dimensional space, the matrices for counterclockwise rotation 
by angles alpha, beta, and gamma around the x, y, and z axes are expressed: 
 
Equation 3: Rotation matrix for each axis x, y, and z: 

 

𝑅𝑅𝑥𝑥(𝛼𝛼) = �
1 0 0
0 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
0 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�,  𝑅𝑅𝑦𝑦(𝛽𝛽) = �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0 1 0
−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

� ,𝑅𝑅𝑧𝑧(𝛾𝛾) = �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0

0 0 1
� 

 

 
Figure 5. Rotation along x,y, and z-axis in 3-D space 
 
When the rotations along x, y and z axes simultaneously, the overall rotation matrix, R is obtained by matrix dot 
product [8]: 
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Equation 4: Combined rotation matrix 
 

𝑅𝑅 = 𝑅𝑅𝑧𝑧(𝛾𝛾)𝑅𝑅𝑦𝑦(𝛽𝛽)𝑅𝑅𝑥𝑥(𝛼𝛼)

= �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜

� 

 
The translation operation in 3-dimensional space is illustrated in Figure 6. 
 

 
Figure 6. Translation operation in 3-D space 
 
Then, the translation operation is unfolded in the equation below. 
Equation 5: Translation operations: 

𝑥𝑥′ = 𝑥𝑥 + 𝑡𝑡𝑥𝑥 
𝑦𝑦′ = 𝑦𝑦 + 𝑡𝑡𝑦𝑦 
𝑧𝑧′ = 𝑧𝑧 + 𝑡𝑡𝑧𝑧 

 
The translations can be rewritten into a matrix as shown in Equation 6. 
Equation 6: Translation operation in matrix form. 
 

�
𝑥𝑥′
𝑦𝑦′
𝑧𝑧′
� = �

𝑡𝑡𝑥𝑥
𝑡𝑡𝑦𝑦
𝑡𝑡𝑧𝑧
� + �

𝑥𝑥𝑜𝑜
𝑦𝑦𝑜𝑜
𝑧𝑧𝑜𝑜
� 

 
Now, the transformation matrix can be considered simultaneously with the rotation matrix, and manipulate the trans-
formation matrix so that the two operations take place together. In this case, the transformed point, 𝑝𝑝𝑡𝑡(𝑥𝑥𝑡𝑡 , 𝑦𝑦𝑡𝑡 , 𝑧𝑧𝑡𝑡) from 
𝑝𝑝𝑜𝑜(𝑥𝑥𝑜𝑜 ,𝑦𝑦𝑜𝑜 , 𝑧𝑧𝑜𝑜), can be expressed by: 
 
Equation 7: Rotation and translation operation. 
 
 𝑝𝑝𝑡𝑡 = 𝑅𝑅 ∙ 𝑝𝑝𝑜𝑜 + 𝑡𝑡.  
 
In a matrix expression, it can be rewritten in the following equation. 
Equation 8: Rotation and translation operation in matrix form. 
 

�   𝑅𝑅3×3   
𝑡𝑡𝑥𝑥
𝑡𝑡𝑦𝑦
𝑡𝑡𝑧𝑧
� 
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𝑅𝑅3×3 is the rotation matrix in 3-dimensional space. Here, the transformation matrix is not a square matrix but a 3x4 
matrix. An inverse matrix can transform the point, 𝑝𝑝𝑡𝑡(𝑥𝑥𝑡𝑡 , 𝑦𝑦𝑡𝑡 , 𝑧𝑧𝑡𝑡), back to its original point, 𝑝𝑝𝑜𝑜(𝑥𝑥𝑜𝑜, 𝑦𝑦𝑜𝑜 , 𝑧𝑧𝑜𝑜), but the trans-
formation matrix above is not inversible as it is not a square matrix. To make this possible, an additional row that does 
not affect the point – by adding ‘0’s and a ‘1’ – is added so that the transformation matrix becomes 4x4 square matrix 
as shown in Equation 9. 
 
Equation 9: Transformation matrix, T. 
 

𝑇𝑇 = �      𝑅𝑅3×3      
𝑡𝑡𝑥𝑥
𝑡𝑡𝑦𝑦
𝑡𝑡𝑧𝑧

0 0 0 1

� 

 

�

𝑥𝑥𝑡𝑡
𝑦𝑦𝑡𝑡
𝑧𝑧𝑡𝑡
1

� = 𝑇𝑇 ∙ �

𝑥𝑥𝑜𝑜
𝑦𝑦𝑜𝑜
𝑧𝑧𝑜𝑜
1

� 

 
The transformation matrix can be easily tested even without Lidar’s point-cloud data sets. A well-known 

open point cloud data source, Stanford bunny dataset was used [9]. The original Stanford bunny data consists of 35,947 
points. The point-cloud data set was sampled down to 3,023 points as it is unnecessary to use all the points given to 
test the effectiveness of the transformation matrix. Using Python’s open3d library, the down sampled bunny dataset 
was rotated by −45𝑜𝑜(45𝑜𝑜 clockwise) and translated along the x-axis by 0.1 as shown in Figure 7.  
 

 
Figure 7. Transformation of Stanford bunny dataset by -45 degrees rotation and 0.1 distance translation 
 

Identification of Transformation Matrix 
 
In the previous section, it is described how a point-cloud data set can be rotated and translated via the transformation 
matrix. This process can be reversed to bring the transformed matrix back to its original point-cloud data set by ob-
taining the transformed matrix. This can be done by calculating the covariance matrix of the two sets and then applying 
the SVD. However, a fundamental assumption for the covariance matrix and SVD is that the number of points com-
prising the two data sets must be equal well structured, meaning that the corresponding points of the two sets are 
known. 
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Covariance Matrix 
 
A covariance matrix is a square matrix giving the covariance between each pair of elements of a given random vector. 
There is a similar named statistical measure, variance. Variance measures the variation of a single random variable 
for example, the math score of a student in a large class, whereas covariance is a measure of how much two random 
variables vary together, for example, the math score and English score of a student in a large class. The formula for 
variance is given by:  
Equation 10: Variance. 

𝜎𝜎2 =
1
𝑛𝑛
�(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2
𝑛𝑛

𝑖𝑖=1

 

 
Where 𝑛𝑛 is the number of data samples and 𝑥̅𝑥 is the mean of the random variable 𝑥𝑥. The covariance is an extension of 
the variance where another variable is introduced, which is expressed by:  
Equation 11: Covariance of two random variables. 
 

𝜎𝜎2(𝑥𝑥,𝑦𝑦) =
1
𝑛𝑛
�(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)
𝑛𝑛

𝑖𝑖=1

 

Where 𝑦𝑦� is the mean of the random variable 𝑦𝑦. 
 
Assuming there are two point-cloud data sets, P and Q, the covariance of P and Q is given by the following equation 
[10]: 
Equation 12: Covariance matrix. 
 

𝑪𝑪𝟑𝟑×𝟑𝟑 =
1
𝑛𝑛

(𝑷𝑷 − 𝑷𝑷�)(𝑸𝑸 − 𝑸𝑸�)𝑻𝑻 

 
Where 𝑃𝑃� and 𝑄𝑄�  are the centroids of the point-cloud data set, P and Q, respectively. P and Q are the point sets in 3-
dimensional space and defined as 3 × 𝑛𝑛 matrices as shown below.  
Equation 13: P and Q in matrix. 
 

𝑷𝑷 = �
𝑥𝑥𝑝𝑝,1 … 𝑥𝑥𝑝𝑝,𝑛𝑛
𝑦𝑦𝑝𝑝,1 … 𝑦𝑦𝑝𝑝,𝑛𝑛
𝑧𝑧𝑝𝑝,1 … 𝑧𝑧𝑝𝑝,𝑛𝑛

�,  𝑸𝑸 = �
𝑥𝑥𝑞𝑞,1 … 𝑥𝑥𝑞𝑞,𝑛𝑛
𝑦𝑦𝑞𝑞,1 … 𝑦𝑦𝑞𝑞,𝑛𝑛
𝑧𝑧𝑞𝑞,1 … 𝑧𝑧𝑞𝑞,𝑛𝑛

� 

 
In order to perform the matrix multiplication of 𝑸𝑸 and P, 𝑸𝑸 needs to be transposed into a 𝑛𝑛 × 3 matrix. The resulting 
covariance matrix will give a 𝑪𝑪𝟑𝟑×𝟑𝟑 for 3-dimensional point cloud data sets (Equation 14). Using the covariance matrix 
is important as it can be used to extract the rotation matrix [12].  
Equation 14: Elements of covariance matrix. 
 

𝑪𝑪𝟑𝟑×𝟑𝟑 =
1
𝑛𝑛

⎣
⎢
⎢
⎢
⎢
⎡�(𝑥𝑥𝑝𝑝 − 𝑥̅𝑥𝑝𝑝)(𝑥𝑥𝑞𝑞 − 𝑥̅𝑥𝑞𝑞) �(𝑥𝑥𝑝𝑝 − 𝑥̅𝑥𝑝𝑝)(𝑦𝑦𝑞𝑞 − 𝑦𝑦�𝑞𝑞) �(𝑥𝑥𝑝𝑝 − 𝑥̅𝑥𝑝𝑝)(𝑧𝑧𝑞𝑞 − 𝑧𝑧𝑞̅𝑞)

�(𝑦𝑦𝑝𝑝 − 𝑦𝑦�𝑝𝑝)(𝑥𝑥𝑞𝑞 − 𝑥̅𝑥𝑞𝑞) �(𝑦𝑦𝑝𝑝 − 𝑦𝑦�𝑝𝑝)(𝑦𝑦𝑞𝑞 − 𝑦𝑦�𝑞𝑞) �(𝑦𝑦𝑝𝑝 − 𝑦𝑦�𝑝𝑝)(𝑧𝑧𝑞𝑞 − 𝑧𝑧𝑞̅𝑞)

�(𝑧𝑧𝑝𝑝 − 𝑧𝑧𝑝𝑝)(𝑥𝑥𝑞𝑞 − 𝑥̅𝑥𝑞𝑞) �(𝑧𝑧𝑝𝑝 − 𝑧𝑧𝑝̅𝑝)(𝑦𝑦𝑞𝑞 − 𝑦𝑦�𝑞𝑞) �(𝑧𝑧𝑝𝑝 − 𝑧𝑧𝑝̅𝑝)(𝑧𝑧𝑞𝑞 − 𝑧𝑧𝑞̅𝑞)⎦
⎥
⎥
⎥
⎥
⎤
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Singular Value Decomposition (SVD) 
 
The singular value decomposition of an arbitrary 𝑚𝑚 × 𝑛𝑛 matrix, A is: 
Equation 15: Singular value decomposition equation. 
 

𝐴𝐴 = 𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇 
 
Where U is 𝑚𝑚 × 𝑚𝑚 and V is 𝑛𝑛 × 𝑛𝑛  orthogonal matrices, and S is 𝑚𝑚 × 𝑛𝑛 diagonal matrix containing the singular values 
𝜎𝜎1 ≥ 𝜎𝜎2 ≥ ⋯ ≥ 𝜎𝜎𝑛𝑛 ≥ 0 with assumption of 𝑛𝑛 < 𝑚𝑚. If we apply SVD to 3 × 3 covariance matrix, Equation 15 be-
comes the following matrix form: 
Equation 16: SVD for covariance matrix 
 

𝐶𝐶3×3 = [𝑈𝑈3×3] �
𝜎𝜎1

𝜎𝜎2
𝜎𝜎3
� [𝑉𝑉3×3]𝑇𝑇 

 
The SVD calculation was performed by using NumPy library in Python. With the U and V matrices from SVD calcu-
lation, the rotation matrix is given by the following equation [11]. 
Equation 17: Rotation matrix. 
 

𝑅𝑅 = 𝑉𝑉𝑈𝑈𝑇𝑇 
 
The translation aligns the centroid of the point-cloud data set, Q, with the rotated centroid of the point-cloud data set 
P (Equation 18) [11]. 
Equation 18: Translation matrix. 
 

𝑡𝑡 = 𝑄𝑄� − 𝑅𝑅𝑃𝑃� 
 
As a setup, the original Stanford bunny point cloud dataset was translated by −45𝑜𝑜 rotation and 0.1 translation in x-
axis and was treated as if this transformation was unknown. Now, the transformation matrix of the original data and 
the transformed data was calculated by using SVD. Now, the transformation matrix is inversed and applied to the 
transformed bunny data to match the original bunny data and allow the user to verify its level of correspondence 
(Figure 8). 

 
 

Figure 8. Reverse transformation back to the original bunny point-cloud data set. 
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Upon displaying both data sets, it was observed that the two were exactly matched, making them indiscernible. There-
fore, to illustrate that the two data sets’ correlation, even number indices of the original bunny data and odd number 
indices of the transformed data set were used. 
 

ICP (Iterative Closest Point) 
 
Under the condition that the correspondence between points of two different data sets are known, SVD is a powerful 
algorithm that can find accurate transformation matrices. However, keeping this condition is nigh impossible in real 
world circumstances. The point-clouds collected by a Lidar is not structured, meaning that the information pertaining 
to which points measured from one Lidar position correspond to the same points measured from another Lidar position 
is unknown. To solve this problem, ICP algorithm is commonly used [12]. The ICP algorithm uses SVD to find the 
transformation between two-point cloud datasets, but makes a key assumption because the point correspondences are 
unknown as mentioned. ICP assumes that the corresponding points between two datasets are the ones with the smallest 
distance, meaning, given a point, P, in one point cloud, its corresponding point in the other point cloud is the point Q, 
which is closest in distance to P. The ICP algorithm begins by identifying corresponding points in terms of the dis-
tance. Then SVD is applied to calculate an intermediary transformation matrix to bring the target point-cloud set close 
to its original point cloud set. The corresponding points between the two sets and the intermediary transformation 
matrix are calculated and applied to the target set to being it even closer to the original data set. This process is repeated 
until the average distance between the corresponding points of the target source and the original source is under a 
certain threshold, hence the word ‘iterative’ in its name [13]. Though powerful, the ICP algorithm is applicable when 
there is a relatively good starting point–meaning that the transformation between two point-clouds is not large to begin 
with. Otherwise, it can get ‘trapped’ in a local minimum and the resulting solution will be useless.  

ICP algorithm is a time-consuming process as distances between points in one set and points in the other 
have to be calculated in order to determine which points correspond with each other. In order to accelerate the ICP 
algorithm, K-d tree (short for k-dimensional tree) method is used to find the correspondences between the point da-
tasets. K-d tree is a space-partitioning data structure for organizing points in a k-dimensional space. K-d trees are a 
useful data structure for several applications, such as searches involving a multidimensional search key like nearest 
neighbor searches [14]. In this paper, the ICP algorithm is implemented in Python with scikit-learn library supporting 
K-d tree function in handy [15]. The code was tested using Stanford bunny data – bunny data from 0º view angle and 
45º view angle. The test shows a good registration result. 
 

 
Figure 9. Matched result of two different bunny datasets using ICP. 
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Results: Point Cloud Registration 
 
Using the ICP algorithm, registrations of multiple point-cloud data sets from a real environment was performed using 
a Lidar scanning robot system (Figure 10).  
 

 
Figure 10. Lidar and robot system used to collect point-cloud data sets 
 

The robot system was developed by Motiv Research co. This system scans 3-dimensional point clouds and 
is able to store information pertaining to the scanner’s position and orientation. The Lidar scanning was done in two 
different locations within an office room. 
 

 
Figure 11. Two point-cloud data sets scanned at two different locations 
 

As mentioned previously, the ICP algorithm fails to correctly correlate pairs of two data sets if the source 
and target point cloud datasets have a relatively large transformation between them. Hence, the scanner’s position and 
orientation information–information pertaining to the Lidar’s location and angle–were used to aid the algorithm. The-
oretically, the position and orientation information are enough to create a transformation matrix of the target point-
cloud–the position information can be used to calculate translation while the orientation information can be used to 
calculate the rotation matrix–but the robot’s pose estimation is not accurate; thus, this information can only be used 
as an aid to reduce error for the ICP algorithm. This can be done by using the position and orientation information as 
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a ‘guess’ to bring the point-cloud set close enough to the original point-cloud set. Then ICP algorithm can be per-
formed to accurately register the two point-cloud data sets. The registered result is presented in Figure 12. 

 
Figure 12. Registration result 
 

Conclusion 
 
The SVD algorithm and the ICP algorithm are applicable when trying to match two point-cloud data sets together. 
The main issue of the SVD algorithm is how limiting it is in terms of its applications—it can only be used in specific 
circumstances where the correspondences of source and target point cloud sets are known, rendering it impractical for 
general use. However, the transformation matrix can be obtained by repeatedly computing the intermediary transfor-
mation matrices along with the K-d tree method, which is the essence of the ICP algorithm. The effectiveness of the 
ICP algorithm was observed to be successful when tested using the Stanford bunny data sets. Furthermore, the appli-
cation of the ICP algorithm was expanded to a real environment through the use of different scans of the office. 
Though the registration accurately combined the two different perspectives of the room, there was a noticeable error. 
Moreover, an aspect of the exploration that was not addressed was the presence of noise; in the Stanford data set and 
the data set from the office, noise was not a huge factor to consider. However, in many other locations, especially in 
the streets where there are moving people and objects, there may be enough noise to ruin the accuracy of transfor-
mation matrices. In future exploration, the two factors, error reduction and consistence in performance in different 
environments, should be addressed.  
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