
Linear Function Approximation as a Resource Efficient Method to Solve the 
Travelling Salesman Problem 
 
Rolan Guang1 and Sajad Khodadian# 

 

1Mentor High School 
#Advisor 
 
ABSTRACT 
 
This paper presents an approach to combinatorial optimization problems using linear function ap-
proximation (LFA) to solve the Travelling Salesman Problem (TSP). We create a reinforcement 
learning model in which we parameterize our policy using linear function approximation instead 
of the more commonly used neural networks. We then evaluated our models based on two factors: 
training time and optimality. When we compared our results with a state-of-the-art neural network 
solver, we found that our model was able to solve the TSP accurately while using drastically less 
computational resources and time to train than the neural network algorithm (Kool et al., 2019). 
 
Introduction 
 
The Travelling Salesman Problem (TSP) is a classic example of a non-deterministic polynomial-time or NP-hard 
combinatorial optimization problem: problems that are impossible to solve using pure computational power (Drori et 
al., 2020). The most widely studied state of the TSP problem is as follows: given a set of cities, how can we generate 
the shortest path for a salesman to travel to each city exactly once and return to the original city. The TSP is classified 
as a NP-hard combinatorial problem because as the number of cities for the salesman increases, the number of possible 
permutations of paths through these cities increases exponentially. 

Throughout literature, the TSP has been studied extensively because of its many applications. First and fore-
most, the problem is representative of a larger class of problems called combinatorial optimization problems. Thus, if 
one can find an efficient algorithm for the TSP, the algorithm can be applied to other combinatorial optimization 
problems as well (Bello et al. 2017). 

A solution to the TSP has many practical applications. First, it has obvious applications in logistics and 
transportation making a TSP solver valuable to the military, commercial delivery services, and bus companies, etc. 
(Cappart et al. 2020). A TSP solver can also be more generally applied in the fields of microchip design, genome 
sequencing, fiber optic network design and others, in which a “city” would represent soldering points, DNA fragments, 
and wiring points (Cappart et al. 2020). The TSP can even be used to solve optimal control problems, with one such 
example being in astronomy, where astronomers want to minimize the time spent moving the telescope between the 
sources. 

Gurobi (Gurobi Optimization, LLC, 2021) and Concorde (Applegate et al., 2003) are two main solvers cre-
ated for the TSP, but both solvers are made with heuristics. Solvers using heuristics can be incredibly accurate and 
fast but they require a lot of time and specialized knowledge to create. In addition, it is difficult to create heuristics 
that can solve every type of TSP. As such, a desire for solvers with increased generality has led to the creation of other 
types of algorithms to solve the problem. In particular, more and more neural network models have been proposed to 
solve this TSP. These neural networks are very accurate but they have a very complicated framework and thus require 
a large amount of computational resources and time to train.  

Volume 10 Issue 4 (2021) 

ISSN: 2167-1907 www.JSR.org 1



In this paper, we propose a different method for solving the TSP. Specifically, we parameterize our sampling 
policy with Linear Function Approximation. This parameterization offers a simple and computationally efficient 
method for solving the TSP. Meanwhile, it does not reduce the accuracy of the solver significantly. In our model, we 
use linear functions to parameterize the softmax function for the sampling of a tour. After sampling a tour, we then 
calculate the cost of our tour and use gradient descent to adjust our policy to minimize the cost. We then compare our 
linear function parameterization algorithm with a neural network algorithm and an exact TSP Solver by training and 
running each model, given 10, 20, 30, and 40 random cities. We measure the effectiveness of our model based on two 
criteria: 
 

1. Solution accuracy: We calculate the optimality gap by comparing the tour generated by our LFA model and 
the exact tour generated by the Gurobi TSP Solver. Our model is able to achieve similar optimality when 
compared to the neural network models. 

2. Training Time: Our model is able to train extremely quickly compared to a state-of-the-art neural network 
model. For instance, our TSP solver for 20 cities trained in just 2.62 seconds while it takes over 11 hours to 
train the deep learning model using attention layers. 

 

Literature Review 
 
The Travelling Salesman Problem is an extremely simple problem to explain. The problem asks, “Given a list of cities 
and the distances between pairs of cities, what is the shortest possible route that visits each city and returns to the 
origin city?” (Bello et al., 2017). However, it is not an easy problem to solve. Finding the solution to the TSP is NP-
hard, even in simpler 2D Euclidean cases where nodes, or cities, are 2D points and edge weights are Euclidean dis-
tances between pairs of points. In efforts to solve the TSP, many models have been created, including supervised 
learning models and reinforcement learning models. These models also use a variety of algorithms such as the greedy 
algorithm, beam search algorithm, and other heuristics (Mazyavkina et al., 2020). A simple solution to the TSP uses 
the Greedy Algorithm, where the salesman travels to the closest city, minimizing short term loss but not accounting 
for long term loss. The Greedy Algorithm works well for TSP instances with a small number of cities, but as the 
number of cities increases past a low threshold the Greedy Algorithm becomes more and more inaccurate. 

As the TSP became studied more and more, researchers have been able to create incredibly precise TSP 
solvers using more complicated heuristics. According to (Mulder and Wunsch, 2003), Concorde (Applegate et. al., 
2003) is “widely regarded as the fastest TSP solver, for large instances, currently in existence.” Concorde uses the 
cutting-plane method to iteratively solve linear programming relaxations of the TSP and the powerful solver has been 
applied to problems with gene mapping, protein function prediction, vehicle routing, and in studying the scaling prop-
erties of combinatorial optimization problems among other applications (Applegate et al., 2003). Gurobi (Gurobi Op-
timization, LLC, 2021) is another optimization solver designed to solve LP, QP, QCP, and MIP problems. Their model 
uses handcrafted cutting plane routines and advanced MIP heuristics to quickly find feasible solutions to the TSP. 

While Gurobi (Gurobi Optimization, LLC, 2021) and Concorde (Applegate et al., 2003) are extremely pro-
ficient in solving most TSP instances, the problem with the heuristic solvers is that designing heuristics for combina-
torial optimization problems requires significant specialized knowledge and years of research work and heuristic solv-
ers cannot be applied to every problem. This challenge has led to an interest in raising the level of generality at which 
optimization solvers can operate. 

Volume 10 Issue 4 (2021) 

ISSN: 2167-1907 www.JSR.org 2



 
Figure 1: Concorde TSP Solver Solving a 500 City TSP Instance 
 

As a result, many researchers have started to create neural networks to solve the TSP in efforts of creating a 
model that can solve every TSP. One notable deep learning model to solve the TSP is the recently created Graph 
Attention Network (Kool et al., 2019) based on reinforcement learning and neural networks. It uses an attention-based 
decoder trained with reinforcement learning to autoregressively build TSP solutions. Compared to other neural net-
work reinforcement learning models, the Graph Attention Network (Kool et al., 2019) uses a more powerful decoder 
and trains the model with a greedy rollout baseline to achieve state-of-the-art results in both speed and accuracy. 

Another deep learning approach to the TSP uses Graph Convolutional Networks and beam search (Joshi et 
al., 2019). The model takes in a graph as an input and extracts compositional features from its nodes and edges by 
stacking several graph convolutional layers (Joshi et al., 2019).  The neural network can convert the input to an edge 
adjacency matrix denoting the probabilities of edges occurring on the most optimal TSP tour. Then, the edge predic-
tions are converted to a tour using a post-hoc beam search technique (Joshi et al., 2019). 

 

 
Figure 2: Graph Convolutional Network TSP Solver Architecture 
 

Currently, these neural network implementations have not been able to match the algorithmic methods in 
terms of speed and solution quality. In addition, they use up a lot of computational resources and time. Even for simple 
problems with as few as 20 cities, these neural networks have to train for hours on end. We believe that we can use 
Linear Function Approximation as a substitute for neural networks to create a simpler reinforcement learning model 
that can effectively solve lower dimensional instances of the TSP with a high degree of accuracy, but faster than the 
neural network models. 

Volume 10 Issue 4 (2021) 

ISSN: 2167-1907 www.JSR.org 3



Purpose 
 
For this project, we define two research questions: 

1. How resource efficient will our linear function approximation model be when compared to a deep learning 
model designed to solve the TSP?  

2. Will our linear function approximation model effectively solve the random TSP problems it is given?  
 

Methodology 
 
We will apply our model to solving the 2D Euclidean TSP. Given an input graph of n cities in a two-dimensional 
space, our goal is that given to find a tour which is a one to one function 𝜋𝜋�(⋅): [𝑛𝑛] → [𝑛𝑛] that visits each city once and 
has the minimum tour length where the tour length is calculated using the following: 

𝐿𝐿(𝜋𝜋�|𝑠𝑠) = ||𝑥𝑥𝜋𝜋�(𝑛𝑛) − 𝑥𝑥𝜋𝜋�(1)||2 + ∑ |𝑛𝑛−1
𝑖𝑖=1 |𝑥𝑥𝜋𝜋�(𝑖𝑖) − 𝑥𝑥𝜋𝜋�(𝑖𝑖+1)||2 (1) 

where || ⋅ ||2 is the ℓ2 norm. 
 
To find the optimal tour, we use our policy 𝜃𝜃 ∈ ℝ𝑛𝑛 which can generate an effective tour when given the locations of 
the cities 𝑠𝑠. 

𝑃𝑃𝜃𝜃(𝜋𝜋|𝑠𝑠) = 𝑃𝑃(𝜋𝜋2|𝜋𝜋1) ∗ 𝑃𝑃(𝜋𝜋3|𝜋𝜋2) ∗ ⋯∗ 𝑃𝑃(𝜋𝜋𝑛𝑛|𝜋𝜋𝑛𝑛−1) (2) 
 
Here, 𝑃𝑃𝜃𝜃  is the probability of sampling a tour. 
 

Our algorithm then uses gradient descent to minimize the loss of the paths generated by the model. First, we 
define a way to calculate a tour 𝜋𝜋� . Simply put, we sample a tour by obtaining a set of linear function approximators 
using our 𝜙𝜙 function and then parameterize our policy with our policy 𝜃𝜃 ∈ ℝ𝑛𝑛 using our linear function approxima-
tors. We generate a tour by going from one city to the next until every city has been visited. To go from city 𝑖𝑖 to city 
𝑗𝑗, we define a suboracle that chooses the next city via the following equation: 
 

𝑃𝑃(𝑖𝑖 → 𝑗𝑗)ℎ =
exp(𝜃𝜃𝑇𝑇𝜙𝜙(ℎ, 𝑗𝑗, 𝑖𝑖))

∑ exp𝑗𝑗′:𝑗𝑗≠ℎ (𝜃𝜃𝑇𝑇𝜙𝜙(ℎ, 𝑗𝑗′, 𝑖𝑖))
 

 
where ℎ is an array of the past cities the suboracle has travelled to. In neural network algorithms created to solve the 
TSP, the neural networks estimate the approximators given to the policy. In our linear function approximation model, 
we generate these approximators via our 𝜙𝜙 method. 
Initially, we implemented a simple 𝜙𝜙 function: 
 

𝜙𝜙ℎ,𝑠𝑠,ℎ𝑚𝑚 = �

∥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦1 − ℎ𝑚𝑚 ∥2 +∥ ℎ𝑚𝑚−1 − ℎ𝑚𝑚 ∥2
∥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦2 − ℎ𝑚𝑚 ∥2 +∥ ℎ𝑚𝑚−1 − ℎ𝑚𝑚 ∥2

⋯
∥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦𝑛𝑛 − ℎ𝑚𝑚 ∥2 +∥ ℎ𝑚𝑚−1 − ℎ𝑚𝑚 ∥2

� 

 
where ℎ𝑚𝑚−1 is the city most recently visited and ℎ𝑚𝑚 is the potential next city for the suboracle to travel to. This 𝜙𝜙 
function only considers two distances: the distance between the current city and the next city and the distance between 
the next city and every other city. We tried to create as simple a 𝜙𝜙 as possible to minimize computational time, but 
because of this 𝜙𝜙 function’s simplicity the suboracle followed the same path as the greedy algorithm, where the subor-
acle always travels to the closest city. While the first 𝜙𝜙 function does work well for small instances of the TSP, it 
would quickly generate increasingly suboptimal tours for more complex instances.  

Volume 10 Issue 4 (2021) 

ISSN: 2167-1907 www.JSR.org 4



 
Figure 3: Comparison between Greedy Solver and LFA Solver Using Initial 𝜙𝜙 Function 

 
Figure 4: Visualization of First Phi Function 
 
Because of this, we design a more complex 𝜙𝜙 function that accounts for the previous three cities that the suboracle 
has visited as well as the next city it is travelling to. This new 𝜙𝜙 increases the performance of our model while not 
affecting computation time. 𝜙𝜙 is an n-dimensional vector 𝜙𝜙ℎ,𝑠𝑠,ℎ𝑚𝑚 ∈ ℝ𝑛𝑛 where 
𝜙𝜙ℎ,𝑠𝑠,ℎ𝑚𝑚
𝑖𝑖 =∥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦𝑖𝑖 − ℎ𝑚𝑚 ∥2+ ∑ ∥ ℎ𝑖𝑖 − ℎ𝑖𝑖+1 ∥2𝑚𝑚−1

𝑖𝑖=𝑚𝑚−3    (3) 
 
After we use our 𝜙𝜙 function and policy 𝜃𝜃 to sample a city to travel to, the city is added to the history ℎ and the subor-
acle travels to new cities until every city has been travelled to. When every city has been visited, the suboracle then 
returns to the origin city. 

 
Algorithm 1: Sample a Tour 

Volume 10 Issue 4 (2021) 

ISSN: 2167-1907 www.JSR.org 5



Now that we have defined how to sample a tour, we need to update our policy. We first define the cost of a tour, which 
we will minimize using gradient descent. We define the cost of a tour as: 
𝐿𝐿(𝜋𝜋𝑖𝑖|𝑠𝑠𝑖𝑖)∇log𝑃𝑃𝜃𝜃(𝜋𝜋𝑖𝑖|𝑠𝑠𝑖𝑖) (4) 
where, 

∇log𝑃𝑃𝜃𝜃(𝜋𝜋𝑚𝑚|𝜋𝜋𝑚𝑚−1) = 𝜙𝜙ℎ,𝑠𝑠,ℎ𝑚𝑚 − ∑ 𝜙𝜙ℎ,𝑠𝑠,𝑖𝑖 ∗ 𝑃𝑃(𝑖𝑖|ℎ)𝑖𝑖  (5) 
Using the cost of a tour, we use standard gradient descent to minimize the cost of the tours generated by our policy 𝜃𝜃. 
We define a hyperparameter 𝑁𝑁 that determines how many times we estimate our gradient before updating it. We then 
use eq. 4 and estimate our gradient N times 

∇𝐽𝐽(𝜃𝜃) ≈ ∑ 𝐿𝐿�𝜋𝜋𝑖𝑖�𝑠𝑠𝑖𝑖�∇ log𝑃𝑃𝜃𝜃�𝜋𝜋𝑖𝑖�𝑠𝑠𝑖𝑖�𝑁𝑁
𝑖𝑖=1

𝑁𝑁
  (6) 

 
Using the gradient generated, we update our policy 𝜃𝜃 𝑘𝑘 times, where 𝑘𝑘 is a hyperparameter that determines how many 
times to update our policy and 𝛾𝛾 is the hyperparameter stepsize, which is used to adjust the scale of policy modifica-
tions. 

𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝛾𝛾∇𝐽𝐽(𝜃𝜃𝑘𝑘) (7) 

 
Algorithm 2: Estimate Gradient and Update Policy 
 
After updating our policy 𝜃𝜃 𝑘𝑘 times, we have parameterized our policy 𝜃𝜃 using linear function approximation which 
we can then use to solve TSP instances. 
 

Results and Discussion 

 
Figure 5: Comparison between LFA Model and Gurobi Exact Solver 
 
When we compare the optimality gap of our LFA model and the Graph Attention Network model (Kool et al., 2019), 
we find that for TSP instances with fewer nodes, our LFA model is able to generate extremely close to optimal tours. 
The tours our model generates is often very similar to the exact solution. However, our model sometimes chooses the 

Volume 10 Issue 4 (2021) 

ISSN: 2167-1907 www.JSR.org 6



wrong point when there are two very close points. This can be shown in our TSP Solver shown in Figure 5, where our 
model travels from point A to point C instead of point B. This in turn causes the model to take several less efficient 
tours. However, these errors do not cause a significant detour from the optimal route and our model is still able to 
generate tours that are very close to the optimal tour. 

 
Figure 6: Avg Optimality Gap vs Number of Cities Over 500 Iterations 
 

Moreover, our model can successfully solve TSP instances regardless of the distribution of the cities. The 
standard deviation for our model is always <0.1% (Figure 6) and does not increase noticeably when the number of 
cities increases. As the number of cities increases, the average optimality gap of our solver increases, showing that 
our LFA model is most effective at solving smaller and simpler instances of the TSP. The average optimality gap 
increases quickly as the number of cities increases from 5 to 25 but converges at around 11%. Our LFA TSP Solver 
has been shown to be most effective in solving simpler 2D Symmetrical TSP instances, but still effectively solves 
larger instances of the TSP.  
 
Table 1: Average Optimality Gap Using Gurobi Solver as a Baseline 

 TSP10 TSP20 TSP30 TSP40 
Gurobi 0.00% 0.00% 0.00% 0.00% 
Kool et al. [2019] 0.01% 0.52% 0.72% 1.32% 
Our Model 3.59% 8.86% 10.51% 11.53% 

 
We ran our model and (Kool et al., 2019) with the same TSP instances and used (Gurobi Optimization, LLC, 

2021) as a baseline and calculated the average optimality gap between the neural network model and our LFA model. 
When our solver is compared with the neural network TSP solver, it has similar optimality gaps for smaller instances 
of the TSP problem. As the number of cities increases, our model is still able to generate efficient tours but gradually 
it would become less accurate. In other words, our solver is able to effectively solve the TSP problem, albeit less 
accurately than the neural network models, even as the number of cities increases. 

Volume 10 Issue 4 (2021) 

ISSN: 2167-1907 www.JSR.org 7



 
Figure 7: Iterations Needed to Minimize Loss Given Different Amounts of Nodes 
 
The real advantage of our linear function approximation reinforcement learning model is the incredibly low time 
required to train the model. We can train our model in mere seconds, much quicker than the tens of thousands of 
seconds needed to train a neural network model (Kool et al., 2019). The LFA model is quick to train because it can 
find a local minimum quickly using gradient descent and update its policy 𝜋𝜋�  accordingly. In figure 7, it is noteworthy 
that regardless of the dimensionality of the problem, our model can converge to a local minimum within two gradient 
updates or four gradient estimates. 
 
Table 2: Training Time of Models (seconds) 

 TSP10 TSP20 TSP30 TSP40 
Kool et al. [2019] 1203s 6480s 27532s 65022s 
Our Model 0.34s 2.62s 11.74s 36.23s 

 
We trained a neural network model (Kool et al., 2019) and our model on an NVIDIA 3070 processor with 

8gb RAM and recorded the time taken to train each model. The train time of our LFA algorithm is significantly lower 
than train time for the neural network algorithm because of our model’s simpler architecture. When we compare the 
train time of the neural network algorithm to the train time of our LFA algorithm, we find that our model trains 
thousands of times more quickly than the neural network model regardless of the number of cities.  
All in all, our results show that linear function approximation can be used to create an extremely lightweight model 
that could solve lower dimensional instances of the TSP while using far less time and computational resources than a 
neural network model. Our model trains extremely quickly, much more so than the neural network model while still 
generating efficient tours for the salesman. 
 

Conclusion 
 
In this paper we introduce a new approach to the Travelling Salesman Problem by applying Linear Function Approx-
imation. We compare our model with the state-of-the-art Graph Attention Network model (Kool et al., 2019) and show 
that our model is not only effective in solving all the 2D Euclidean TSP instances, but it also generates tours with high 
accuracy when compared to the Gurobi exact TSP solver (Gurobi Optimization, LLC, 2021). In other words, our 
model can achieve similar optimality gaps in comparison to the neural network model, even though our model would 
become less effective in solving higher dimensional instances of the TSP. However, our model makes up for the loss 

Volume 10 Issue 4 (2021) 

ISSN: 2167-1907 www.JSR.org 8



of optimality by gaining in train time: it is thousands of times faster than the neural network models. The simplified 
structure of linear function approximation models allows them to train extremely quickly. Essentially, our model is 
much simpler and requires significantly less time and resources to train than the neural network models. Still, our 
model generates effective tours that are comparable to the accuracy of the neural network solver’s tours. Based on the 
result, we are optimistic that linear function approximation is an effective method to use to solve computational opti-
mization problems. In the future we would like to improve upon our model’s accuracy and effectiveness in solving 
higher dimensional instances of the TSP by improving heuristics in our model. We want to improve the model’s 
generality so that it can solve different types of TSP. In addition, we would like to apply linear function approximation 
to other kinds of combinatorial optimization problems. Through these efforts, we can truly discover how powerful 
linear function approximation algorithms can be in solving the TSP and more broadly, all kinds of NP-hard combina-
torial optimization problems.  
 

References 
 
Applegate, D., Bixby, R., Chvatal, V., and Kool, W. (2003). Concorde tsp solver.  
 
Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio, S. (2017). Neural combinatorial optimization with 

reinforcement learning.  
 
Cappart, Q., Chételat, D., Khalil, E., Lodi, A., Morris, C., and Velickovíc, P. (2021). Combinatorial optimization 

and reasoning with graph neural networks.  
 
Cappart, Q., Moisan, T., Rousseau, L.-M., Pr émont-Schwarz, I., and Cire, A. (2020). Combining reinforcement 

learning and constraint programming for combinatorial optimization.  
 
Drori, I., Kharkar, A., Sickinger, W. R., Kates, B., Ma, Q., Ge, S., Dolev, E., Dietrich, B., Williamson, D. P., and 

Udell, M. (2020). Learning to solve combinatorial optimization problems on real-world graphs in linear time.  
 
Gurobi Optimization, LLC (2021). Gurobi Optimizer Reference Manual.  
 
Joshi, C. K., Laurent, T., and Bresson, X. (2019). An efficient graph convolutional network technique for the 

travelling salesman problem.  
 
Kool, W., van Hoof, H., and Welling, M. (2019). Attention, learn to solve routing problems!  
 
Mazyavkina, N., Sviridov, S., Ivanov, S., and Burnaev, E. (2020). Reinforcement learning for combinatorial 

optimization: A survey.  
 
Mulder, S. and Wunsch, D. (2003). Million city traveling salesman problem solution by divide and conquer 

clustering with adaptive resonance neural networks. 

Volume 10 Issue 4 (2021) 

ISSN: 2167-1907 www.JSR.org 9




