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ABSTRACT 

Cancer is the common name used to categorize a collection of diseases. In the United States, there were an estimated 
1.8 million new cancer cases and 600,000 cancer deaths in 2020. Though it has been proven that an early diagnosis 
can significantly reduce cancer mortality, cancer screening is inaccessible to much of the world’s population. Machine 
learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. A 
literature search with the Google Scholar and PubMed databases from January 2020 to June 2021 determined that 
currently, no machine learning model (n=0/417) has an accuracy of 90% or higher in diagnosing multiple cancers. We 
propose our model HOPE, the Heuristic Oncological Prognosis Evaluator, a transfer learning diagnostic tool for the 
screening of patients with common cancers. By applying this approach to magnetic resonance (MRI) and digital whole 
slide pathology images, HOPE 2.0 demonstrates an overall accuracy of 95.52% in classifying brain, breast, colorectal, 
and lung cancer. HOPE 2.0 is a unique state-of-the-art model, as it possesses the ability to analyze multiple types of 
image data (radiology and pathology) and has an accuracy higher than existing models. HOPE 2.0 may ultimately aid 
in accelerating the diagnosis of multiple cancer types, resulting in improved clinical outcomes compared to previous 
research that focused on singular cancer diagnosis. 

Introduction 

Artificial Intelligence 

In 2007, John McCarthy defined artificial intelligence (AI) as “the science and engineering of making intelligent 
machines”(McCarthy, 2007). Coined “a simulation of human intelligence”, AI aims to mimic human decision-making 
skills. Looked at another way, can we design a machine that can think? (Turing, 1950). AI is composed of several 
major subdomains, one of which is machine learning (Figure 1).  
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Figure 1. The relationships among AI subfields. 
 
Machine Learning 
 
“Any machine that could think would first have to be able to learn” (Turing, 1950). Machine learning is a very im-
portant subdomain of artificial intelligence in which algorithms are designed to learn and adapt without being explic-
itly programmed. The two main types of machine learning are supervised and unsupervised; a supervised learning 
algorithm utilizes labeled data whereas an unsupervised algorithm finds patterns in data without labeled examples 
(Sathya & Abraham, 2013; Shalev-Shwartz & Ben-David, 2014). There are many machine learning approaches in the 
literature that have been applied to the analysis of medical images, but deep learning algorithms appear to be the most 
promising. 
 
Deep Learning 
 
Deep learning is a subdomain of machine learning that uses multi-layer neural networks (which model the human 
brain) to hierarchically extract concepts from data. Deep learning approaches have been used to great success in fields 
such as radiomics (the extraction of features from a medical image; see Figure 2) and natural language processing 
(Goodfellow et al., 2016; LeCun et al., 2015).  

Training a deep learning algorithm requires an extensive amount of examples which are frequently difficult 
or expensive to obtain (Prior et al., 2020). One approach that has been employed to limit the need for domain specific 
training examples is the use of transfer learning. 
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Figure 2. Machine learning enhanced quantitative analysis of radiology and pathology images can assist in disease 
detection. 
 
Transfer Learning 
 
Transfer learning applies previously learned knowledge to a new task (Raghu et al., 2019; Torrey & Shavlik, 2010). 
A deep learning algorithm is first trained on a large data set of the same type of information as will be used in the real 
application, e.g., images drawn from the internet.  It is then retargeted to the problem domain, e.g., MRI images of the 
brain, by additional training using a much smaller labeled data set from the problem domain. Image classification 
correlates to supervised transfer learning, as it classifies data based on labeled training data. In this examination, a 
supervised transfer learning algorithm was created to diagnose multiple cancers (Figure 3). 
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Figure 3. Transfer learning can be utilized to improve cancer detection. 
 

Methods 
 
PRISMA Literature Review 
 
A PRISMA (Moher et al., 2009) literature search was conducted to determine if a machine learning model had an 
accuracy of 90% or higher in diagnosing multiple cancers. Google Scholar and PubMed with records from January 
2020 to June 2021 were analyzed; the keywords used in Google Scholar were “transfer learning cnn brain breast 
colorectal lung cancer radiology pathology images accuracy”, and the keywords used in PubMed were “cancer pa-
thology radiology transfer learning cnn”. A total of 459 studies were identified through the database search with 
Google Scholar (n=444) and PubMed (n=15). After removing duplicates with the Mendeley Reference Manager 
(n=42), 417 studies remained. These 417 studies were screened based on the title and abstract, and after removal 
(n=405), 12 studies fit the criteria of the keywords. All 12 studies were either inaccessible (n=2), did not apply transfer 
learning (n=2), had an accuracy less than or equal to 90% (n=6), or did not describe a model that could detect multiple 
cancers (n=2). Therefore, the literature search determined that currently, no machine learning model (n=0/417) has an 
accuracy of 90% or higher in diagnosing multiple cancers (Figure 4). 
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Figure 4. A literature review yielded no current model that can diagnose multiple cancers with a high accuracy. 
 
Dataset Acquisition 
 
After establishing that no machine learning model has met the current specifications, we began to address this issue. 
Kaggle is an on-line research community that conducts challenge competitions. Their  website provides high-quality 
labeled data from these competitions and was used to locate pathology and radiology images for each of the four 
cancers. For brain cancer, a total of 11,663 T1 and T2 weighted MRI (radiology) images were found: 6,159 images 
were pre-labeled as benign, and 5,504 were pre-labeled as malignant(Kaggle, 2020a). For breast cancer, a total of 
277,524 pathology images were found: 198,738 images were pre-labeled as benign, and 78,786 were pre-labeled as 
malignant(Kaggle, 2019). For colorectal cancer, a total of 10,000 pathology images were found: 5,000 images were 
pre-labeled as benign, and 5,000 were pre-labeled as malignant(Kaggle, 2020b). For lung cancer, a total of 15,000 
pathology images were found: 5,000 images were pre-labeled as benign, and 10,000 were pre-labeled as malig-
nant(Kaggle, 2020b). Originally all images were used for the model, which led to overfitting, training on lower-quality 
images, and an accuracy of 97.56%. To address overfitting, a structural equation modeling (SEM) analysis was 
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conducted to determine the minimum number of balanced images required to achieve an accuracy of 90% or higher. 
To address the quality of images, images were examined and chosen based on brightness, contrast, and size. 
 
SEM Analysis 
 
Structural equation modeling (SEM) (Hoyle, 1995) uses different types of models to show relationships between latent 
and observed variables (cite). The expected effect size was 0.5, the model represents 2 latent variables and 5 observed 
variables, the p-value was 0.05, and the statistical power was calculated as 0.8. The statistical test indicated that 2,000 
images were required for optimal accuracy; so, 2,000 images were evenly distributed (by removal) across all classes 
of the four cancers (Figure 5). 

 
 
Figure 5. SEM Analysis was used to find the minimum number of images for a high accuracy model. 
 
Experimental Procedure 
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Google Inception v3 Architecture on Cloud TPU, IDLE (Python 3.7 64-Bit), Python 3.7.3 Shell, Kaggle datasets, and 
a desktop computer/laptop with 8GB of RAM were used to create a training and testing program in the Python pro-
gramming language. 200 images of each cancer class were set aside for testing purposes before the training phase 
began. 
 

Results 
 
Training 
 
During the training phase, epochs (iterations were increased to train the model. After fully training, the detection 
accuracy was 99.50% for brain and breast cancer, and 100.00% for colorectal and lung cancer: the average training 
accuracy for the model was 98.54% (Figure 6). 
 

 
Figure 6. Training accuracy as a function of number of training iterations for each of the four cancers. 
 
Testing 
 
During the testing phase, IDLE was used to conduct test runs with 10 random images of each cancer class (individual 
tests). After fully testing, the detection accuracy was 100.00% for brain, breast, colorectal, and lung cancer: the aver-
age training accuracy for the model was 100.00%. Additionally, independent testing was conducted with images gath-
ered from The Cancer Imaging Archive (TCIA) (Clark et al., 2013). Testing data was drawn from multiple TCIA 
collections for brain MRI (CPTAC, 2018; Scarpace et al., 2016) and whole slide digital pathology images for breast, 
lung and colorectal cancer (Saltz et al., 2018).  After fully testing, the detection accuracy was 92.00% for brain cancer, 
80.00% for breast and colorectal cancer, and 88.00% for lung cancer: the average training accuracy for the model was 
92.50% (Figure 7). 
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Figure 7. Testing accuracy calculated through independent tests for each of the four cancers. 
 

Discussion 
 
Cancerous tumors are classified as either benign or malignant; benign tumors undergo slow growth and do not spread 
to the body, whereas malignant tumors undergo rapid growth while spreading to the rest of the body. The four most 
impactful types of cancer (by prevalence and mortality rate) are brain, breast, colorectal, and lung (Sung et al., 2021). 
 
Comparison of Models 
 
Computer models have been developed that use image classification for disease detection. Models that target brain 
cancer (Hollon et al., 2020; Kumar et al., 2020), breast cancer (Sadoughi et al., 2018; Sepandi et al., 2018; Zeng & 
Zhang, 2020), colorectal cancer (Y. Li et al., 2019; Nartowt et al., 2019), or lung cancer (X. Li et al., 2019; Zhao et 
al., 2020) achieve accuracies ranging between 81.44% and 100%, but they only focus on one specific type of image 
data. HOPE 2.0 not only achieved high accuracy (95.53%) but also detected multiple types of cancer through multiple 
image types (radiology and pathology). 
 

Limitations 
 
This study has potential limitations. Selection bias was presented, as the researcher decided which images were fit to 
be used for training and testing. The datasets acquired might have mislabeled data, which impacts the accuracy. Ap-
plicability is also posed as a limitation; currently, the model is saved directly on a computer and is not publicly acces-
sible. 
 

Conclusion 
 
After importing approximately 18,000 images into the model, the Inception v3 HOPE 2.0 classified brain, breast, 

colorectal, and lung cancer with an overall accuracy of 95.52% �
98.54+[100+852 ]

2
�. This is a unique model, as it possesses 

the ability to analyze multiple types of image data: radiology and pathology images. As most algorithms possess an 
accuracy in the 80-90% range and focus on one specific type of image data, HOPE 2.0 is a state-of-the-art model. 
HOPE 2.0 may ultimately aid in accelerating the diagnosis of these cancers, resulting in improved clinical outcomes, 
when compared to previous research which focused on singular cancer diagnosis. 
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