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ABSTRACT 

A guide dog is a critical companion for the blind, which enables independent travel of the blind. However, due 
to the costly and time-consuming training process, only 1.7% of the blind who wish to adopt a guide dog can 
take it. In order to alleviate this social problem, previous studies have suggested several blind guiding systems 
heavily based on hardware devices, such as GPS(Global Positioning System), RFID(Radio-Frequency Identi-
fication), and ultrasonic devices. However, those techniques lack administrative feasibility to use in real-world 
environments. Moreover, those techniques are deficient in warning of obstacles, which makes the system non-
user-friendly. To guide the blind universally and provide accurate information about the obstacles without cum-
bersome devices, we propose a novel deep learning-based blind guiding system, GuideDogNet. The proposed 
system consists of an object detection network, depth prediction network, and post-processing module. To pro-
vide user-friendly outputs for the blind, we propose a rule-based post-processing module that outputs the label, 
direction, and distance of the obstacles by combining the results of the object detection network and the depth 
prediction network. We achieved an mAP of 67.8 on the AI Hub Sidewalks dataset which is publicly available. 
To the best of our knowledge, this is the first attempt at a deep learning-based blind guiding system. 

The code will be available on https://github.com/Yunseo-Hwang/AI-GuideDog 

Introduction 

A guide dog is a critical companion for the blind as it provides mobility and enables the independent life of the 
blind. There are 37,000 people with severe visual impairment in Korea, and 3,400 people expect guide dogs' 
help. However, only 1.7% of the blind who wish to adopt a guide dog can take it. Guide dog training involves 
challenges that remain to be addressed: (1) costly and time-consuming training process, (2) limited guidable 
sphere, and (3) difficult management for the blind. 

The guide dog training process lengthens up to 18 months and costs up to $42,000 for each dog. [1] 
Even after a costly and time-consuming training process, only 30% of the dogs qualify as guide dogs. The lack 
of guide dogs is a great challenge for the blind, as guide dogs work as the eyes for them. In addition, the 
limitation of guide dog competence is another challenge for the blind, restricting their living sphere. Guide dogs 
can only guide limited pre-trained areas. To take a new path, one needs an assistant who can newly train the 
dog. This hinders the independent life of the blind. The primary breed for the guide dog is Labrador Retriever. 
The Labrador Retriever weighs up to 36 kilograms, which is difficult for the blind to take care of. 

So far, guide dogs and canes have become the eyes for the blind. However, due to the remaining 
challenges of guide dogs, several techniques were introduced in recent years on behalf of guide dogs and canes. 
Recent techniques guiding the blind are (1) GPS(Global Positioning System), (2) RFID(Radio Frequency Iden-
tification), and (3) Ultrasonic devices. 

The GPS-based technique [2] uses location information to guide the user to his destination. It can guide 
the user to any destination with location information without training the route in advance. However, it cannot 

Volume 10 Issue 4 (2021) 

ISSN: 2167-1907 www.JSR.org 1

https://github.com/Yunseo-Hwang/AI-GuideDog


   
 

   
 

detect destinations or obstacles without location information. Extensive facilities with location information, 
such as bus stops, crosswalks, and buildings, are recognized, but small obstacles such as people, bicycles, and 
benches are not identified. When a blind face a bench or a post without location information while walking, the 
GPS method does not take a detour or give any warning. Also, it fails to guide indoor destinations without 
location information. The RFID-based technique [3] consists of a smart floor and a portable terminal unit. The 
smart floor has a passive RFID tag built into it, which translates unique ID numbers. A portable terminal unit 
functions as an RFID reader and guides the user to the destination. However, the RFID method is not universally 
available anywhere. It is only available in places with RFID tags and preinstalled maps. Building infrastructures 
for the RFID method is expensive and inefficient. The ultrasonic sensor method [4] detects any obstacle within 
a specified range. It warns of dangers with voice or vibration. However, it cannot identify the type of obstacle, 
provides limited information about the obstacle. 
 

 
Figure 1. Result of GuideDogNet. The proposed system shows the label, distance, and direction of the obstacles 
from the RGB image. 
 

To address these problems, we propose a novel deep learning-based blind guiding system, Guid-
eDogNet, that is not only hardware-free but also user-friendly. The proposed system provides various infor-
mation, including the label, distance, and direction of obstacles to the users. To develop the system, we exploit 
two recently released studies DETR [5] and DPT [6] for object detection and depth prediction, respectively. In 
addition, we propose a post-processing module that outputs the label, distance, and direction of obstacle objects 
as shown in Fig. 1. 
Contributions of this paper are summarized as: 
 

1. We proposed a novel deep learning-based blind guiding system. To the best of our knowledge, this is 
the first study to combine object detection and depth prediction results to make the system user-
friendly. 

2. We proposed the post-processing module that outputs various information; directions, distances, and 
labels of the obstacles. 

 

Related Work 
 
Deep learning-based algorithms have shown very successful results in many computer vision problems. In this 
paper, we apply two well-known deep learning tasks, object detection, and depth prediction, to develop the 
proposed system. 
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2.1 Object Detection 
 
Object detection performs classification and localization of an object and outputs labels and binding boxes as a 
result. Object detection has two major approaches: two-stage detection and one-stage detection. Two-stage de-
tection methods perform classification and localization sequentially. Due to their architectures, there is a bot-
tleneck between the states and it makes the processing time very slow. R-CNN [7] and Fast R-CNN [8] are 
major two-stage detectors. On the other hand, one-stage detectors such as YOLO [9] and SSD [10] perform 
classification and localization simultaneously. These methods perform relatively faster but yield poor results 
compared to the two-stage methods. 

Recently, there have been many studies about applying transformer architectures to computer vision 
problems. Inspired by this, Xizhou Zhu et al. proposed DETR(Detection Transformer) [5], an object detection 
network with a transformer structure. DETR dramatically reduced the processing time as it removed the hairy 
hand-craft post-processing by solving the object detection as a set prediction problem. In the proposed system, 
we exploit DETR to detect obstacle objects in the given RGB images. 
 
2.2 Depth Prediction 
 
Depth prediction, also known as 3D reconstruction, estimates the depth map from the input RGB images. Tra-
ditionally, depth prediction networks are mainly based on CNN [11][12]. However, conducting depth prediction 
networks using CNN requires deep neural layer depths, which increases computation volume. Recently, the 
transformer structure is also applied to the depth prediction problem. René Ranftl et al. proposed DPT(Dense 
Prediction Transformer) [6]. They experimentally proved that DPT effectively decreased computational cost 
while preserving comparable depth prediction accuracy. In the proposed system, we exploit DPT to generate 
the depth map from the input images. 
 

Methods 
 

 
Figure 2. Architecture of GuideDogNet. The proposed system consists of an object detection network, depth 
prediction network, and post-processing module. It outputs the label, distance, and direction of the obstacles. 
 
Fig. 2 shows the architecture of the proposed blind guiding system, GuideDogNet. The proposed system con-
sists of an object detection network, depth prediction network, and post-processing module. The object detec-
tion network detects obstacle objects and the depth prediction network predicts a depth map in given RGB 
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images. The post-processing module takes the detection results and depth map as input and outputs the label, 
direction, and distance of the obstacles. 
 
3.1 Object Detection Network 
 
DETR(DEtection TRansformer) [5] is the state-of-the-art object detection network using transformer structure, 
generally composed of a backbone, encoder, decoder, and prediction heads. DETR considers object detection 
as a set prediction problem that does not require a hand-craft bounding box regression module and duplicate 
removal process which often causes a bottleneck. In this paper, we exploit the DETR structure to develop the 
object detection network as it has a relatively low computational cost while preserving comparable accuracy.  

The backbone network takes input samples and produces 2D image features as output. They are con-
verted into 1D vectors and then fed to the transformer encoder after concatenated with positional encodings. 
The transformer decoder takes the output of the encoder with additional learnable queries and produces the 
bounding boxes and their object labels. In this paper, we train the network with 30 classes, including 29 kinds 
of objects and backgrounds. Eq (1) and Eq (2) shows the loss function used to train the network.  
 
 
 
Equation 1: Cross-Entropy Loss function: 

𝐿𝐿𝐶𝐶𝐶𝐶 = −�𝑡𝑡𝑖𝑖 log(𝑝𝑝𝑖𝑖)  𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑛𝑛

𝑖𝑖=1

 

𝑤𝑤ℎ𝑒𝑒𝑓𝑓𝑒𝑒 𝑡𝑡𝑖𝑖  𝑖𝑖𝑐𝑐 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡ℎ 𝑐𝑐𝑐𝑐𝑙𝑙𝑒𝑒𝑐𝑐 𝑐𝑐𝑛𝑛𝑎𝑎 𝑝𝑝𝑖𝑖  𝑖𝑖𝑐𝑐 𝑡𝑡ℎ𝑒𝑒 𝑆𝑆𝑓𝑓𝑓𝑓𝑡𝑡𝑆𝑆𝑐𝑐𝑆𝑆 𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑐𝑐𝑙𝑙𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑡𝑡ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

Equation 2: L1 Loss function: 

𝐿𝐿1𝐿𝐿𝑓𝑓𝑐𝑐𝑐𝑐𝐿𝐿𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡𝑖𝑖𝑓𝑓𝑛𝑛 =  � |𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑖𝑖𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝|
𝑛𝑛

𝑖𝑖=1

 

 
 
 
3.2 Depth Prediction Network 
 
Generally, the existing depth prediction methods need many neural network layers to produce accurate predic-
tion results. However, this essentially makes the trained network have a high computational cost.  

DPT(Dense Prediction Transformer) [6] is a depth prediction network built on a transformer structure. 
As it has a relatively lower computational cost while preserving comparable accuracy, we exploit the method 
to predict the depth map of the input images. DPT splits 2D images into small image patches and each patch is 
flattened into a 1D shape and then fed into the transformer encoder and transformer decoder. The decoder 
predicts the final depth map and it is used to predict the distance of the obstacle objects detected in the object 
detection module. 
 
3.3 Post-processing module: location-aware depth and direction prediction module 
 
The proposed post-processing module combines the detected object and depth map information and produces 
the label, distance, and direction of the objects. The distance and direction of the obstacles are calculated from 
the bounding box coordinates and the depth map. 
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Figure 3. Overview of post-processing module calculating the distance of the obstacle from the bounding box 
coordinates 
 

Fig. 3 shows the overview of the post-processing module calculating the distance of the obstacle, get 
distance function. The post-processing network uses the bounding box coordinates to output the direction and 
distance of the obstacles. The get distance function outputs the distance of obstacles in meters. Y-coordinate of 
the bottom-right point of the bounding box is the input value. Depending on the value of the y-coordinate, the 
distance of the obstacle is output to 2 m, 4 m, 6 m, and 8 m. The distance is verified if the distance obtained 
from the bounding box coordinate is consistent with the distance calculated from the depth map. 
 
Table 1. Pseudocode of get distance function. 

Input: y-coordinate of the bottom-right point of the bounding box, ybr 

Output: distance in meters 

if ybr < 216 then 8 meters 

else if ybr < 532 then 6 meters 

else if ybr < 728 then 4 meters 

else 2 meters 

end if 
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Figure 4. Overview of post-processing module calculating the direction of the obstacle from the bounding 
box coordinates 
 

Fig.4 shows the overview of the post-processing module calculating the direction of the obstacle, get 
direction function. The get direction function outputs the direction of an obstacle in clock position. The bound-
ing box coordinates are the input, and the direction is the output. The direction of the obstacles is displayed at 
9 to 12 and 1 to 3 o’clock, depending on the location of the bounding box. The coordinates of the bounding 
boxes are normalized. The origin is the location of the user and at (0.5, 1). Using the slope between the origin 
and the center of the bounding box, the position of the obstacles is indicated. 
 
Table 2. Pseudocode of get direction function 

Input: xtl, ytl, xbr, ybr 

 xtl: x-coordinate of the top-left point of the bounding box 

 ytl: y-coordinate of the top-left point of the bounding box 

 xbr: x-coordinate of the bottom-right point of the bounding box 

 ybr: y-coordinate of the bottom-right point of the bounding box 

Output: direction in clock position 

 

Normalize coordinates of the bounding box 

xtl /= 1920 

xbr /= 1920 

ytl /= 1080 

 

 

if slope <= start_12 and slope >= 
end_12: 

return 12 

elif slope > end_11 and slope <= 
start_11: 

return 11 

elif slope > end_1 and slope <= 
start_1: 

return 1 

elif slope > end_10 and slope <= 
start_10: 
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ybr /= 1080 

Coordinate of the origin 

origin_x = 0.5 

origin_y = 1. 

Coordinate of the center of the bounding box 

x = (xtl + xbr) * 0.5 

y = (ytl + ybr) * 0.5 

Slope between the origin and the center 

slope = (x-origin_x) / (y-origin_y) 

Slope of  starting and ending point of each direction 

12: start_12 = 0.2  end_12   = -1 * start_12 

11: start_11 = 0.5  end_11   = start_12 

1: start_1 = end_12 end_1   = -1 * start_11  

10: start_10 = 2.5  end_10   = start_11 

2: start_2 = end_1 end_2   = -1 * start_10 

9: end_9  = start_10 

3: start3 = end_2 

return 10 

elif slope > end_2 and slope <= 
start_2: 

return 2 

elif slope <= start3: 

return 3 

else: 

return 9 

 

Experiment 
 
4.1 Dataset 
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Figure 5. Sample images of sidewalk dataset from AI Hub [13]. 
 
Dataset used in this study is obtained from AI Hub[13], organized by the Ministry of Science and ICT and 
supported by Korea Intelligence Information Society Promotion Agency. The dataset is specifically obtained 
for the use of artificial intelligence research to improve the quality of life of the blind. It meets the purpose of 
this study to provide a system guiding the blind. 

The dataset consists of the images obtained in various real-world pedestrian environments that contain 
movable and static obstacles on the sidewalk with collision risks. It contains class labels and bounding boxes 
of 29 types of objects such as bicycles, movable signage, benches, and traffic lights. The dataset has 352,810 
samples, divided into 10% of the test dataset and 90% of the training dataset. 
 
4.2 Implementation Details 
 
To train the proposed system, we perform a total of 200 Epochs using Adam (beta=0.9, beta2=0.99) [ 14]. We 
apply MultiStepLR with a decreasing factor of 0.1 from the 80th and 120th epoch. 

 
Figure 6. Visual comparisons between data augmentation techniques. (a) is the original image. (b) is the image 
with color gitter, (c) is the image with gaussian blur, and (d) is the image with a random flip. 
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 For data augmentation, we use color jitter, gaussian blur, and random flip as shown in Fig. 6. Color 
Jitter calibrates the brightness of the samples. The samples in the dataset are photographed only in bright situ-
ations, so it differs from the real-world environments. To achieve rich probabilistic features, we apply color 
jitter data augmentation to mimic dark or cloudy environments. The images obtained in real-world environ-
ments also tend to be blurry since the camera attached to the wearable device oscillates as the user walks. Hence 
we randomly apply the gaussian blur in the training sample to enforce the trained model to perform well in this 
situation. Additionally, we apply Random Horizontal Flip which is often used to leverage out the accuracy and 
generalization power of the trained model. 
 
4.3 Evaluation 
 
The evaluation follows the same protocol explained in [5] 

 The Intersection over Union (IoU) is the predicted bounding box and the actual bounding box inter-
section divided by the union of the two bounding boxes. If the IoU is greater than the threshold, it is 
considered true positive (TP), if it is less than the threshold, false positive (FP). 

 The mean average precision (mAP) is the average area of the Precision-Recall curve for each class, 
which measures the performance of the object detection algorithm. 

 

 
Figure 7. Visual comparison between results of networks of GuideDogNet. 
 

(a) input image, (b) result of object detection network, (c) result of depth prediction network, and (d) 
final result of the proposed post-processing module. 
 
Table 3. Ablation study result. 

Model mAP 

baseline model 67.8 

model with swine positional encoding 68.2 
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Figure 8. (a) is a training loss graph. (b) is a test accuracy graph. 
 

Fig 7. shows the result images in each step in the proposed system; (a) is the input image, (b) shows 
labels and bounding boxes of obstacles detected from the object detection network, (c) is a depth map predicted 
from the depth prediction network, and (d) is the final result of the proposed system. To provide user-friendly 
outputs for the blind, we propose a rule-based post-processing module that outputs the label, direction, and 
distance of the obstacles by combining the results of the object detection network and the depth prediction 
network.  

Additionally, we heuristically found that the positional encoding module affects the final accuracy. 
Through many experiments, we chose to apply the positional encoding method used in Swine [15]. It helped to 
yield better results in the proposed system as shown in Table 3. The baseline model achieves an mAP of 67.8. 
The model trained using the swine positional encoding method achieves a slightly better result of an mAP of 
68.2. The performance was enhanced by 0.4. 

Fig 8. shows the training loss and the accuracy of the test set. We found that the accuracy of the test 
set starts to saturate at around 180K training iteration thus we terminate the training process at the point. 
 

Conclusion 
 
In this paper, we proposed a novel deep learning-based blind guiding system, GuideDogNet, that outputs user-
friendly information containing the label, direction, and distance of the obstacles. The proposed system consists 
of an object detection network, depth prediction network, and post-processing module. The proposed system 
achieved an mAP of 67.8. Additionally, we replaced the existing positional encoding module with the state-of-
the-art method to produce better results. In conclusion, the final model achieved an mAP of 68.2. The proposed 
system can be easily applied to smartphones or wearable devices with cameras. Users can simply hold the 
camera to get guidance for the obstacles while walking. Yet, the system has a relatively high computational 
cost. In future research, we will develop a lighter model while preserving comparable accuracy. 
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