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ABSTRACT 

Following a Low-Cost Carrier (LCC) model, Southwest Airlines has consistently demonstrated growing an-
nual revenues up until the start of the COVID-19 pandemic. Southwest’s quarterly revenue shows that there exists a 
strong seasonal component with the revenue in the first quarter of the fiscal year (September) significantly higher than 
other quarters. Using the quarterly revenue data we constructed a time-series model: a Seasonal Autoregressive Inte-
grated Moving Average (Seasonal ARIMA or SARIMA) model to forecast Southwest’s revenue over 2020. We then 
performed a cost and solvency risk analysis using the company’s financial results from its annual reports to analyze 
Southwest’s financial performance due to COVID-19, and proposed business strategies to keep Southwest financially 
stable. 

Introduction 

An income statement reflects the effect of management’s operating decisions on business performance, and 
accounts for the resulting profit or loss for a company [1, p. 47]. 

Analyzing financial statements is a complex activity that uses a system of models, methods, and techniques 
to assess financial position, performances, and potential of an enterprise. In this paper, we employ time-series analysis 
techniques for forecasting revenue to assess the financial situation of Southwest. 

Time series datasets are datasets in which the order of observation is essential [2]. Time series analyses are 
about examining patterns in data that emerge over time, of a length pertinent to the problem at hand. Time series 
forecasting is performed in nearly every organization that works with quantifiable data. Retail and transportation sales 
time series tend to portray seasonal trends in that there is a repeating pattern over a set interval of time. Time series 
data which have a trend and exhibit cyclicity can be trained into a Seasonal Autoregressive Integrated Moving Average 
(Seasonal ARIMA or SARIMA) model [3, p. 157]. 

The time series investigated in this paper refers to the quarterly revenue data published by Southwest Airlines 
(trading ticker: LUV) over the course of 14 years from 2005 to 2019 [4] (FIG. 1, revenue in millions USD). Prior to 
2005, Southwest was dealing with the economic losses of the September 11th, 2001, terrorist attack on the World 
Trade Center. This reduced flight travel significantly, and airline revenues were lower than their predicted outcome 
following the fiscal year of 2000. In order to appropriately forecast with the SARIMA model, we acquired data fol-
lowing 2005, when the company had recovered from the 9/11 tragedy and started displaying seasonal growth in rev-
enue. We looked to analyze the calm period following September 11 and up to the start of the COVID-19 pandemic. 

Critical to selecting data for the SARIMA model is consistency in the company’s performance: Southwest 
has seen constant growth over the past decade. We collected the most recent quarterly revenue reports released by 
Southwest from 2005 to 2019, to forecast revenue in 2020, had COVID-19 not happened. Points from 2005-2018 were 
used to build the model, and points from 2019 were used to test the accuracy of the model. 
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Figure 1. Graph of Southwest’s quarterly revenue 
 
The goal of this project is to build and test the SARIMA model on Southwest. Combining the model’s pre-

dictions with Southwest's balance sheets, we examine potential risks and simulate possible real-world decisions South-
west could take. With the programming language R [5], we analyze and interpret the data into a SARIMA model and 
explain the impact of the pandemic. 

 
Revenue Data Analysis 

 
Southwest Airlines’ sales have been highly seasonal with upside and downside swings, since revenue is de-

pendent on factors such as leisure travel, which usually occurs during seasons of travel. However, the revenue has 
also followed a long-term positive linear trend due to an overall increase in commerce and population. Gradually, 
increasing volumes of people have been traveling. 

To see these features of the data, we plot the sample autocorrelation function (ACF) as well as the histogram 
(FIG. 2) of the Revenue. In simple terms, ACF shows relation between present values and past values over different 
lag times. As variance is for single variable statistics, ACF is for time series. The sample autocorrelation function 
allows us to assess the degree of dependence (correlation) in the data at various times [3, p. 16]. A series is addressed 
as having low correlation if its plot demonstrates randomness, and the sample ACF is within the confidence interval 
(Figure 2, marked with blue dashed lines) for each lag except for lag 0, which should have an ACF of 1.  

 

 
Figure 2. ACF and Histogram of Revenue Data 
 
Here, the ACF for revenue data shows a strong linear trend in the spikes, and the histogram plot does not 

assume a normal distribution. Consequently, we have to difference the data to make it stationary. To determine 
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necessary transformations, we decompose the time series to observe its individual components (FIG 3): a trend com-
ponent, a seasonal component, and a random noise component that is stationary [3, p. 20]. 

 
Figure 3. Decomposition Plot of Revenue Data 
 
The second and third rows of the decomposition graph show the positive linear trend and the seasonal up-

downs respectively. The variance of the random component seems to resemble that of Gaussian white noise, however, 
to see if it can be stabilized further, we will perform a Box-Cox transformation [6]. There are also large spikes in the 
random component, which indicate the white noise might follow a heavy-tailed distribution. 

 
Data Transformation 

 
To build a model for the data, we must transform the data to acquire a stationary time series. The resulting 

plot should resemble Gaussian White Noise. We will test if a Box-Cox transformation stabilizes the series. Then we 
difference the dataset at specific lags for seasonality and the linear trend to obtain a stationary time series. 

 
Testing a Box-Cox Transformation 

In order to properly assess the output of the ACFs, the data in Figure 1 needs to be sized down such that it 
resembles a plot of Gaussian White Noise: a plot of seemingly random spikes. Box-Cox transformations are useful in 
removing the increasing or decreasing variability of the time series with each level i.e., it will remove the trend where 
the difference between the dip and peak is increasing, such that the difference remains constant [3, p. 390]. We tenta-
tively perform a Box-Cox transformation (FIG. 4), shown in equation 1, to smoothen the variance.  

 
Equation 1: box-cox transformation of the time series from Figure 1: 
 

𝑌𝑌𝑡𝑡 = (𝑋𝑋𝑡𝑡𝜆𝜆 − 1)/𝜆𝜆 
Where, 

𝑌𝑌𝑡𝑡 = 𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
𝑋𝑋𝑡𝑡 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
𝜆𝜆 = 𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐶𝐶𝐶𝐶𝐶𝐶 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
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Figure 4. Graph of Box-Cox transformed revenue data compared to original revenue data 
 
Comparing the two plots, we notice close to no change in the plots, and opposite to our intention, the variance 

of the Box-Cox transformed data (Yt) increased. Therefore, we proceeded with the original data (Xt)for the next set of 
transformations. 

 
Differencing 

From Figure 1, we see two clear trends in the data: an upward, linear business trend, and a seasonal trend of 
periodic peaks and dips. We can remove these trends through differencing, where the seasonal and linear components 
are removed from the data by repeated differencing at specific lags to create a stationary white noise time series [3, p. 
25].  

To remove the positive linear trend, we difference at lag-4 in Equation 2. (FIG. 5). This is because the sea-
sonality is based on quarterly reported revenue for the fiscal years. 

 
Equation 2: Differencing for seasonality to arrive at differenced time series 
 

𝑌𝑌𝑡𝑡 = 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑡𝑡−4, 
Where, 

𝑌𝑌𝑡𝑡  𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙 − 4 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
𝑋𝑋𝑡𝑡  𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

 
 

 
Figure 5. Seasonally Differenced Time Series 
 
This equation can be rearranged (equation 3) to incorporate a backward shift operator (B) which is a variable 

that equates a time series to an instance immediately preceding it [3, p. 25]. 
 
Equation 3: Introducing the backward shift operator (B) into Equation 2, 
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𝑌𝑌𝑡𝑡 = (1 − 𝐵𝐵4)𝑋𝑋𝑡𝑡 
Where, 

𝐵𝐵4 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙 − 4  
 
The resulting time series in Figure 5 is still not entirely random, as at certain points throughout the series, it 

exhibits some linearity. Using Equation 4, we remove the spontaneous linearity by differencing at lag-1 on Yt from 
Equation 3 for quarterly revenue.  

 
Equation 4: we difference the resulting equation from equation 3 for its linear trend 
 

𝑌𝑌𝑡𝑡 = (1 − 𝐵𝐵4)(1 − 𝐵𝐵)𝑋𝑋𝑡𝑡 
Where, 

𝐵𝐵 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙 − 1  
 

 
Figure 6. First and Seasonally Differenced Time Series 
 
Through a sequence of differencing for seasonality and linear trend, the time series looks stationary, and 

there is no visible trend (FIG. 6). The ACF shows no specific trend, and while the histogram still demonstrates heavy 
tails, it looks considerably close to a normal distribution than from Figure 1 (FIG. 7).  

 
Figure 7. ACF and Histogram of First and Seasonally Differenced Data 
 
 

Building The Model 
 
The Seasonal ARIMA model (SARIMA), is a non-stationary seasonal model derived from the class of 

ARMA models. ARMA models are the combination of Autoregressive and Moving Average models used to describe 
a particular time series as a function of a Gaussian white noise [7, p. 77]. The “I” letter of the ARIMA model acronym 
corresponds to the initial differencing steps applied to eliminate the non-stationarity part of the time series. Our ob-
served time series required differencing of order 1 in order to remove the linear trend component. The seasonal “S” 
component of the seasonal ARIMA model comes from differencing the time series at lag 4 to remove the cyclicity of 
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the data. [3, p. 177] To summarize, each component of the Seasonal ARIMA model manipulates Gaussian white noises 
to produce the time series being observed. 

The SARIMA model is represented by SARIMA (p, d, q) x (P, D, Q)s [3, p. 177]. Parameters p and q represent 
the orders of the non-seasonal autoregressive (AR) and moving average (MA) terms respectively. P and Q represent 
the orders of the seasonal AR and MA terms, respectively. The parameter s represents the seasonal frequency of the 
data. The d and D correspond to the orders of differencing associated with the “I” component of non-stationarity 
component. Since quarterly revenue data is used in this case study, the s value is set at 4. The d and D parameters 
represent the times we difference for trend and seasonality, respectively. In this case, they are both 1. 

While the d, D, and s parameters have already been determined, due to the randomness exhibited in the 
decomposition graph (FIG. 3), the p, P, q, and Q parameters will need to be chosen according to the ACF, and a 
slightly modified version of the ACF, the partial ACF (PACF). The ACF of a time series is used to examine how it is 
related to the Moving Average model. The PACF operates similarly, however it examines how a time series is related 
to the Autoregressive model. To make sure the right parameters are chosen, we suggest potential candidates based on 
our analysis of the ACF and PACF graphs (FIG. 7). 

To select an appropriate SARIMA model for the revenue, we take a look at the ACF and also the partial 
autocorrelation function (PACF) of the seasonally differenced time series, and then at the first and seasonally differ-
enced time series. Specifically, we look at spikes in both plots that fall outside the confidence interval indicated by 
the dashed blue lines, except for ACF and PACF spikes at lag 0, which are always present. 

There are quite a few lags in both the ACF and PACF plots which meander close to the confidence interval, 
either just above it or just below. The lag values correspond to that many periods, where one period is a quarter in the 
fiscal year. Hence the spikes at lag 2 corresponds to quarter 8 in the quarterly revenue data. When determining param-
eters, we consider whether there is a spike at lag 1 for p and q, and then whether there are spikes occurring at lags 
greater than 1 to determine P and Q. Depending on how close a spike is to its confidence interval, we will need to 
check whether the corresponding parameter is truly its designated value, or whether the spike being outside the con-
fidence interval is simply due to random noise. 

 

 
Figure 7. PACF and ACF of Seasonally Differenced Data 
 
Looking at the ACF and PACF from Figure 7, in both plots, there is no spike outside the confidence interval 

at lag 1, so p and q are likely 0 and there is a spike at lag 2 in the PACF and ACF, so it is reasonable to suggest that 
P, Q ≥ 1. However, since the PACF lag 1 spike approaches the confidence interval, we will test with various values 
of p, q. 

Having rough estimates of SARIMA model parameters, we formulated four possible model candidates. 
 
Equation 5. SARIMA model candidates 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,0,1) × (1,1,1)4 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,1,1) × (0,1,2)4 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,0,0) × (0,1,1)4 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(0,1,0) × (0,1,1)4 
 
We evaluate the model candidates according to their Akaike’s Information Criterion, corrected for bias 

(AICc) [8]. The AIC is a calculation on the residuals of the model to estimate its accuracy to the given data. It measures 
the goodness of fit by balancing the error of the fit against the amount of model parameters. When comparing model 
candidates, we should pick the model with the smallest AICc value (TAB. 1) [7, p. 51]. 

 
Table 1. Akaike’s Information Criterion for the four model candidates 
 

Model 
Candidate 

AICc 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,0,1)
× (1,1,1)4 

750.3461 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,1,1)
× (0,1,2)4 

736.9157 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,0,0)
× (0,1,1)4 

746.0329 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(0,1,0)
× (0,1,1)4 

730.7539 

 
From the AICc values, model (4) has the smallest AICc and is therefore the most appropriate seasonal 

ARIMA model for the revenue data. Model (4) in equation 5 shows the representation of the SARIMA model with its 
parameters. The mathematical function can be seen in equation 6, which expresses our observed time (Xt) series as a 
function of white noise (Zt).  

 
Equation 6. Time series equation for model (4). 
 

(1 − 𝐵𝐵)(1 − 𝐵𝐵4)𝑋𝑋𝑡𝑡 = (1 − 0.597𝐵𝐵4)𝑍𝑍𝑡𝑡 
 
Unit Roots are used to tell us whether our model needs to be differenced further, or it has been over-differ-

enced. A root near 1 for the autoregressive indicates that the data should be differenced before modeling. A root near 
1 for the moving average suggests the data may have been over-differenced [3, p. 169]. The polynomial (1 −
0.597𝐵𝐵4) has its roots outside the unit circle (FIG. 8) indicating model invertibility, and no further transformations 
need to be executed. 

 

 
Figure 8. Green roots are outside the unit circle 
 

Diagnostic Checking 
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The goodness of fit of statistical model (4) from equation 5 can be tested based on the behavior of its residuals. 
Since our chosen SARIMA model was a pure MA model, and it is causal, we may proceed with diagnostic checking 
[7, p. 140]. We start by examining whether the residuals resemble a Gaussian white noise.  

 

 
Figure 9. Graph and histogram of the residuals of SARIMA(0,1,0)×(0,1,1)4 

 
If the fitted model is appropriate, the graph of the residuals should resemble that of a white noise [3, p. 145]. 

The graph gives no indication of a non-zero mean or non-constant variance. So, it is reasonable to assume that the 
residuals resemble a Gaussian white noise. The histogram also indicates a mean at 0, however there seem to be heavy 
tails on either ends (FIG. 9). 

We reach the same conclusion from plotting a Quantile-Quantile (Q-Q) plot. Q-Q plots are used to compare 
shapes of distributions and are commonly used to compare a data set to a theoretical model [9]. We compare the 
residuals to a sample quantities model seen below (FIG. 10).  

 

 
Figure 10. Normal Q-Q Plot of model Residuals 
 
We see that at deviations of 1 on either side of 0, the residuals align with the plotted line, while veering off 

near the edges.  
We can test whether or not the observed residuals are consistent with white noise by examining their sample 

autocorrelation functions [3, p. 146] Therefore we pass the residuals into the ACF and PACF. The spikes all fall well 
within the confidence interval indicating that the residuals resemble Gaussian White noise (FIG. 11). The selected 
model seems to appropriately fit the selected data as excluding the ACF lag 0, none of the lags have spikes outside 
the confidence interval (dotted lines).  
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Figure 11. ACF and PACF of Model (4) Residuals 
 
Next, we perform Portmanteau tests [10] to assess the normality and independence of the residuals and 

whether they resemble white noise (TAB 2). The portmanteau tests are chi squared statistics that measure the inde-
pendence of the residuals to the model. A p-value greater than 0.05 indicates that we fail to reject the null hypothesis 
that the residuals are Gaussian white noise. This in tune shows that the model is appropriate for forecasting. 

 
Table 2. Table of the portmanteau statistical tests and their p-values 

Statisti-
cal Test 

p-
value 

Shapiro-
Wilk Test 

0.008 

Box-
Pierce Test 

0.730 

Ljung-
Box Test 

0.598 

McLeod-
Li Test 

0.783 

 
Shapiro-Wilk Test: The Shapiro-Wilk test checks for the normality of the residuals (EQ. 7) where the x(i) are 

the ith order statistic, and the ai’s are constants generated from means, variances, and covariances of the order statistics 
of a sample size n [11]. 

 
Equation 7. Equation that calculates the test-statistic of the Shapiro-Wilk Test 
 

𝑊𝑊 =
(∑ 𝑎𝑎𝑖𝑖𝑥𝑥(𝑖𝑖))𝑛𝑛

𝑖𝑖=1
2

∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1

 

 
The computed p-value of 0.008 (Table 2) is less than 0.05. Therefore, we reject the null hypothesis that the 

distribution is normal. However, this is no surprise as the residuals follow a heavy-tailed distribution, not Gaussian. 
 
Box-Pierce Test: The Box-Pierce test assesses the independence of residuals (EQ. 8) where h = √𝑛𝑛. 
 
Equation 8. Equation to calculate the test statistic of the Box-Pierce Test 
 

𝑄𝑄𝑊𝑊 = 𝑛𝑛� 𝑝̂𝑝2𝑤𝑤(𝑗𝑗)~𝑥𝑥1−𝛼𝛼2(ℎ − 𝑝𝑝 − 𝑞𝑞)
ℎ

𝑗𝑗=1
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Since we have 60 observations, we may approximate h by rounding down: h = 7. For the selected model we 
have p and q both equal to 0. The test statistic is going to be a 𝜒𝜒2 (chi-squared) distribution with 7 degrees of freedom 
[12]. As seen by a p-value of 0.730 (Table 2) which is greater than 0.05, we fail to reject the null hypothesis about the 
data being independent and conclude that the residuals resemble a white noise. 

 
Ljung-Box Test: The Ljung-Box test also checks for independence of residuals. It considers the magnitude 

of the autocorrelation of each h grouping in the data [10]. The test statistic is going to be a 𝜒𝜒2 (chi-squared) distribution 
with 7 degrees of freedom (EQ. 9). 

 
Equation 9. Equation for the Ljung-Box test 
 

𝑄𝑄�𝑊𝑊 = 𝑛𝑛(𝑛𝑛 + 2)�
𝑝̂𝑝2𝑤𝑤(𝑗𝑗)
𝑛𝑛 − 𝑗𝑗

~𝑥𝑥1−𝛼𝛼2(ℎ − 𝑝𝑝 − 𝑞𝑞)
ℎ

𝑗𝑗=1
 

 
Since the computed p-value of 0.598 (Table 2) is also greater than 0.05, we again fail to reject the data 

independence hypothesis; therefore, stating the residuals resemble a white noise. 
 
McLeod-Li Test: Another portmanteau test, the McLeod-Li test can be used to further analyze the white noise 

hypothesis, stating that if the data resemble white noise from the Ljung-Box test (EQ. 9), then the squared data are 
also white noise [13]. We use the McLeod-Li test (EQ. 10) where ℎ = √𝑛𝑛. 

 
Equation 10. Equation of the McLeod-Li test calculation 
 

𝑄𝑄�𝑊𝑊𝑊𝑊 = 𝑛𝑛(𝑛𝑛 + 2)�
𝑝̂𝑝2𝑤𝑤𝑤𝑤(𝑗𝑗)
𝑛𝑛 − 𝑗𝑗

~𝑥𝑥1−𝛼𝛼2(ℎ)
ℎ

𝑗𝑗=1
 

 
The p-value far exceeds 0.05 (Table 2), so we do not reject the hypothesis that the square residuals are white 

noise, and state the residuals resemble white noise. Since the results of the portmanteau tests indicate that the residuals 
demonstrate strong model selection, we proceed by comparing a forecast of Southwest’s revenue to the actual reported 
revenue. 

Following the statistical tests, we check whether the model forecasts revenue for Southwest accurately. We 
train the model on a dataset of quarterly reported revenues from 2005 to 2018 and test it on the 4 quarters of 2019 
(FIG. 12, revenue in millions USD). We see that the forecast (marked with red orbs) was approximately 5% higher 
than the true observation (marked by the blue line). In order to resolve this issue, we reduced the predictions of the 
model by 5% and arrived at Figure 13 (revenue listed in millions USD). Following this change, the percent error was 
reduced to a maximum of 2.11%. 
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Figure 12. Forecast of 2019 Southwest Revenue               Figure 13. Forecast with 5% reductions 
 
The reason for this 5% reduction was due to the grounding of the BOEING 737-MAX. On March 10, 2019, 

the plane was grounded due to the two 737-MAX tragedies with Lion Air and Ethiopian Airlines. Due to Southwest’s 
airline business model, its fleet of planes reduced [14]. The loss in flight capacity amounted to approximately 8% due 
to the groundings [15]. As a result, the company reported significantly lower revenue for the second quarter of the 
2019 fiscal year, and the following quarters were lower than the forecast, likely due to the recovery period following 
the 737-MAX grounding. 

 
Forecasting and Risk 

 
Having determined that SARIMA(0,1,0) × (0,1,1)4 can accurately predict Southwest’s revenue, we look at two cases. 
We examine Southwest’s financial performance, had the pandemic not taken place, to understand Southwest’s cash 
flow and the workable earnings for the year of 2020. We then take a look at the impact COVID-19 had on the revenue 
for Southwest, and the implications of this impact based on the unchanging financial costs that would still need to be 
paid for the fiscal year of 2020. 

In order to understand the financial position of Southwest, we had a look at Southwest’s financial statement 
as well, specifically the Income Statement and Balance Sheet [16]. We assumed that the costs in the income statement 
and assets plus liabilities in the balance sheet would assume a growth as they have been for the past decade. 

For the income statement, to calculate the total operating expenses, we multiplied its components: the selling, 
general, administrative (SGA), salaries, wages, benefits, and fuel, oil expenses by their mean growth percentage in 
each respective category from their 2019 values. The total operating income was computed by subtracting the Total 
Operating Expenses from the Operating revenue for the fiscal year. 

For the Balance sheet, we did the same, computing assets and liabilities by multiplying 2019s value by a 
mean percent growth of the past decade. 

 
Base Case Forecasting 

A look at Figure 14 shows that the revenue of Southwest would have been close to approximately 5 billion 
each quarter. The total sum for the fiscal year of 2020 was forecasted to be approximately $23.3 billion in revenue. 
Through the process described, we computed the total operating expenses to be approximately $20.3 billion. Hence, 
the operating income, which is money the company must use for its programs, was approximately $3 billion. Through 
calculations of the balance sheet, the total current liabilities subtracted from the assets computed a difference of 
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approximately $3.8 billion, which is the company’s deficit. This deficit is resolved by the operating income. Subtract-
ing the two shows that in a normal base case scenario, Southwest airlines would be running close to $800 million in 
debt, which can be absolved with bank loans or reducing fuel costs. 

 

 
Figure 14. Forecast of 2020 Southwest Revenue 
 

Worst Case Scenario Analysis 
Had the pandemic not taken place, we analyze the worst-case scenario for Southwest airlines, indicated by 

the brown lower bounds in Figure 15. Summing these values, we arrive at an expected $21.2 billion in annual revenue. 
Assuming the same operating expenses, the operating income is calculated to be $1.2 billion only. Assuming the same 
deficit as the base case, subtracting the deficit from the operating income results in $2.5 billion negative, which South-
west would incur as debt. That is an additional $1.7 billion in debt which is troublesome for Southwest and a reason 
for concern. Southwest incurred huge losses due to the pandemic. 

 

 
Figure 15. Lower bounds highlighted in Brown Color 
 

Impact of COVID-19 Pandemic 
The impact of COVID-19 was drastic on the financial stability of Southwest in 2020 (FIG. 16). Southwest 

reported an annual revenue of $9 billion. $14.4 billion less than the SARIMA model prediction. As a result, the loss 
of operating income due to COVID-19 was approximately $6.8 billion dollars.  

 

Volume 10 Issue 3 (2021) 

ISSN: 2167-1907 www.JSR.org 12



   
 

   
 

 
Figure 16. 2020 Forecast with Real Values Included 
 
Southwest experienced $6.8 billion dollars in economic losses. Their annual revenue was not enough to sup-

plement their Total Operating Expenses. The only change in the Operating Expenses was that due to the lack of travel, 
Southwest did not have to spend as much as it normally would on fuel and oil costs. However regardless of the fuel 
cuts, Southwest was negative $6.8 in operating income. They were incurring debts. Added to that, neither the assets 
nor the liabilities changed much from what their expected values were. Thus, Southwest had the previously discussed 
$3.8 billion dollars in deficit. The $6.8 billion is added to this deficit to arrive at an estimated debt of $10 billion. This 
came in the form of the $25 billion government bailout [17]. As a result, the reported Total Current Assets for South-
west in 2020, which should have been approximately $6.3 billion, were $15.1 billion. The Long-Term Debt also grew 
from merely $2 billion in 2019 to an astounding $10.4 billion in 2020. The goal is to gradually pay off this increasing 
debt as the pandemic progresses and travel starts to reopen. 

 

Conclusion 
 

In this paper we used Southwest Airlines as a case study for business forecasting and risk management. We took the 
quarterly revenue data for Southwest and differenced it on seasonality and trend, arriving at a stationary time series 
resembling white noise. Following that, we analyzed the ACFs and PACFs of the seasonally adjusted time series to 
determine parameter values for p, q, P, Q. Seeing that the spikes were relatively close to the confidence interval, we 
proposed several values for each parameter, and came up with 4 SARIMA model candidates. We finally arrived at 
Model (4), SARIMA (0,1,0) × (0,1,1)4 which had the lowest AICc. We ran diagnostic tests on the model and checked 
its accuracy with pre-existing data. Since it was accurate, we ran a solvency risk analysis on Southwest Airlines had 
the COVID-19 pandemic not happened, and the impact of the pandemic on Southwest’s financial situation. Seeing 
the debt and data for southwest, we propose that Southwest should reduce its SG&A and fuel costs in order to make 
up for the COVID-19 recovery. We also look to develop a model that could estimate the amount of time it would take 
for Southwest to reapproach the revenue numbers it had prior to the pandemic. While cutting costs, Southwest can 
look to strike deals with investors and look to resolve the debt as soon as passengers start flying again. 
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