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ABSTRACT 

When people cross bridges, they create vibrations on these bridges because of the impulses they exert. In some cases, 
vertical oscillations have caused bridges to collapse due to a phenomenon called resonance. This paper utilizes simple 
harmonic motion to analyze the oscillations of bridges to create a mathematical model determining when certain 
bridges collapse. The paper first utilizes Hooke’s Law and Newton’s Second Law to create a second order differential 
equation of the motion of the bridge whose solution is a sine wave. Substituting in values for momentum for a singular 
impulse on the bridge, the paper then solves for the amplitude after the impulse. Adapting this model for impulses at 
different times and plotting the output graphs using Python, the bridge is shown to exhibit resonance and suggestions 
for damping are made. 

Objective 

The purpose of this research is to create a mathematical model of the vertical oscillations of a bridge when impulses 
are applied to it at different times. By understanding the number and frequency of impulses on the bridge, the model 
can be used to determine certain amplitudes where the bridge could potentially collapse. This research is important as 
civil engineers will be able to more accurately design damping systems to prevent the bridge from collapsing. 

Introduction 

Bridges have been built essentially since the start of humanity. From cavemen stacking logs across rivers to Romans 
building arch bridges, civil engineers have always designed new bridges to transport people and goods across bodies 
of water, roads, and valleys (Mishra, 2017). Bridges like the Golden Gate Bridge are even a part of popular culture; 
the bridge has been destroyed in movies like X-Men: the Last Stand, Godzilla, and Terminator: Genisys to demonstrate 
the power of a villain (Barker, 2021). There are a few different kinds of bridges including a beam bridge, truss bridge, 
cantilever bridge, arch bridge, suspension bridge, and cable-stayed bridge (Billington, 1999). In this paper, the theo-
retical bridge that is modeled is a beam bridge and is represented by a platform with a spring attached to the bottom 
of it as shown in Figure 1. The reason the spring is not a beam in this model is because a spring exhibits simple 
harmonic motion and can simplify the mathematical model for the oscillations of the platform.  
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The physics behind the collapse of bridges is often due to an effect called resonance. Resonance is where an 
object increases its amplitude when the frequency of the force applied is equal to the natural frequency of the object. 
The natural frequency is the frequency of an object in the absence of a driving force (Lim, 2018). For small oscillations, 
the platform in Figure 1 is a simple harmonic oscillator. 

To describe the motion of an oscillator, we can instead consider a pendulum with a weight on the end of it, 
similar to a child on a swing. The pendulum has a natural frequency dependent on the pendulum’s mass and length 
(Russell). Normally, the amplitude of the oscillations would decrease with time due to damping, which is why we 
have to keep pushing the child in the swing or else they will stop. If we assume that the bridge has no damping, the 
oscillations will grow forever due to resonance (Lim, 2018). A person pushing the child in the swing is an example of 
a driving force. The force is periodic, and it has the same frequency as the natural frequency of the pendulum of the 
swing-child system. This is an example of resonance. 

The physics of the oscillation of a child is the same as the physics of the oscillation of a bridge. Similar to 
the pushes of a swing, the steps of marching soldiers on a bridge may act as periodic forces that cause oscillations 
with increasingly larger amplitudes that may cause a bridge to collapse without proper damping. 
 
The mathematical model of a bridge without impulses 
 
𝑀𝑀 is the mass of the platform. We ignore damping in this case. The forces acting on the platform are its weight, 𝑀𝑀𝑀𝑀, 
and the elastic spring force, 𝐹𝐹𝑒𝑒, which follows Hooke’s Law. Assume the elastic spring force and the gravitational 
force is 0. This is where 𝑥𝑥 is 0; the height of the platform is the equilibrium height. When the platform is not at the 
equilibrium height, the elastic spring force points in the opposite direction of the displacement. This is to say if the 
platform is below the equilibrium height, the elastic spring force points up, and if the platform is above the equilibrium 
height, the force points down. 

The elastic spring force is defined as 𝐹𝐹𝑒𝑒 = 𝑘𝑘𝑥𝑥, where 𝑘𝑘 is the spring constant, and 𝑘𝑘 is always positive. Now, 
assume that the gravitational force is acting on the bridge. The net force on the bridge, defined as the sum of all forces 
acting on the bridge, is comprised of the elastic spring force and the gravitational force where 𝐹𝐹𝑛𝑛𝑒𝑒𝑛𝑛 =  −𝑘𝑘𝑥𝑥 − 𝑀𝑀𝑀𝑀. 
Newton’s Second Law shows 

−𝑘𝑘𝑥𝑥 −𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀, (1) 
where t denotes time, and x is the displacement of the platform. Defining v and a as the velocity and acceleration of 
the platform, given by the first and second derivatives of x respectively, we can rewrite equation 1 as the following: 

−𝑘𝑘𝑥𝑥 − 𝑀𝑀𝑥𝑥” = 𝑀𝑀𝑀𝑀. (2) 
Equation 2 is a differential equation where the unknown is 𝑥𝑥(𝑡𝑡). When the platform is in static equilibrium 

(it is not moving), the acceleration (𝑥𝑥") is zero. For this reason, if we substitute 0 for 𝑥𝑥" in equation 2, we get −𝑘𝑘𝑥𝑥 −
𝑀𝑀𝑀𝑀 = 0 and 𝑀𝑀𝑀𝑀 =  −𝑘𝑘𝑥𝑥. The constant function 𝑥𝑥(𝑡𝑡) =  −𝑀𝑀𝑀𝑀/𝑘𝑘 is a solution where the platform is not moving, and 
the elastic force is equal to the weight in opposite directions. We can now define a new frame of reference 𝑧𝑧(𝑡𝑡) where 

Volume 10 Issue 4 (2021) 

ISSN: 2167-1907 www.JSR.org 2



the platform rests at equilibrium with the force of gravity applied. Because 𝑧𝑧 is yet another position function, 𝑧𝑧′ = 𝑥𝑥′ 
and 𝑧𝑧" =  𝑥𝑥”. 𝑧𝑧(𝑡𝑡) then becomes 

𝑧𝑧(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) +
𝑀𝑀𝑀𝑀
𝑘𝑘

.  (3) 

𝑧𝑧 is 0 where 𝑥𝑥 is −𝑀𝑀𝑀𝑀/𝑘𝑘 because −𝑀𝑀𝑀𝑀
𝑘𝑘

+ 𝑀𝑀𝑀𝑀
𝑘𝑘

= 0. With algebraic manipulation and defining 𝜔𝜔 = �𝑘𝑘/𝑀𝑀, equation 
2 becomes 

−𝑘𝑘 �𝑧𝑧 −
𝑀𝑀𝑀𝑀
𝑘𝑘
� − 𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑧𝑧” 

−𝑘𝑘𝑧𝑧 + 𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑧𝑧” 

−
𝑘𝑘𝑧𝑧
𝑀𝑀

= 𝑧𝑧” 

𝑧𝑧” +
𝑘𝑘𝑧𝑧
𝑀𝑀

= 0 
𝑧𝑧” + 𝜔𝜔2𝑧𝑧 = 0 (4) 

There are an infinite number of solutions to equation 4. The solutions are 
𝑧𝑧 = 𝐴𝐴 sin(𝜔𝜔𝑡𝑡 + 𝜙𝜙) (5) 

where 𝐴𝐴 and 𝜙𝜙 are constants, determined by the initial position and velocity of the system where 𝐴𝐴 is the amplitude 
of the platform.  
 

 
 

Figure 2 shows a plot of the solution when 𝐴𝐴 = 1, 𝜔𝜔 = 2𝜋𝜋, and 𝜙𝜙 = −𝜋𝜋
4
. One thing to note is that the plat-

form will oscillate forever in this model because damping is neglected. The frequency 𝜔𝜔 = �𝑘𝑘/𝑀𝑀 is the natural fre-
quency of the platform, and the amplitude only depends on the initial conditions. 
 
Effect of an impulse on the dynamics of the platform 
 
An impulse is defined as a certain amount of mass in motion or a change in force applied over time (Khan Academy). 
The impulse in this case would be equivalent to a soldier stepping on a bridge exerting a constant force on it for a 
short period of time. We can model a soldier’s footsteps as an impulse, −𝐽𝐽, defined as 

𝑚𝑚2𝑣𝑣2 − 𝑚𝑚1𝑣𝑣1 = −𝐽𝐽. (6) 
Equation 6 simply demonstrates that the change in momentum of an object is equal to its impulse. If the 

platform is subjected to a single impulse at time 𝑡𝑡1, equation 5 is now only correct for 𝑡𝑡 where 𝑡𝑡 does not equal 𝑡𝑡1. 
Because the model does not account for an impulse, when the force is applied at 𝑡𝑡1, the equation is not correct. 
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Therefore, we can rewrite equation 5 using the constants 1 and 2 for before and after the impulse on the platform, 
yielding two separate equations: 

𝑧𝑧(𝑡𝑡) =  �𝐴𝐴! sin(𝜔𝜔𝑡𝑡 + 𝜙𝜙1)  𝑖𝑖𝑖𝑖 𝑡𝑡 < 𝑡𝑡1
𝐴𝐴2 sin(𝜔𝜔𝑡𝑡 + 𝜙𝜙2)  𝑖𝑖𝑖𝑖 𝑡𝑡 > 𝑡𝑡1

 (7) 

We have two boundary conditions of this system. 𝑧𝑧 must be continuous, and the velocities of 𝑧𝑧′(𝑡𝑡) must 
satisfy equation 6. Because 𝑧𝑧 is continuous and the change in momentum is −𝐽𝐽 at time 𝑡𝑡1, the constants 𝐴𝐴2 and 𝜙𝜙2 
can be found in terms of 𝐴𝐴1 and 𝜙𝜙1. We can first set up this problem knowing that the position 𝑧𝑧 before and after the 
impulse is the same. 

𝐴𝐴1 sin(𝜔𝜔𝑡𝑡1 + 𝜙𝜙1) = 𝐴𝐴2 sin(𝜔𝜔𝑡𝑡1 + 𝜙𝜙2) 
We can find the velocity of 𝑧𝑧(𝑡𝑡) by taking the derivative of equation 7. 

𝑣𝑣2 =
𝑑𝑑
𝑑𝑑𝑡𝑡
𝐴𝐴2 sin(𝜔𝜔𝑡𝑡1 + 𝜙𝜙2) =  𝜔𝜔𝐴𝐴2 cos(𝜔𝜔𝑡𝑡1 + 𝜙𝜙2) 

𝑣𝑣1 =
𝑑𝑑
𝑑𝑑𝑡𝑡
𝐴𝐴1 sin(𝜔𝜔𝑡𝑡1 + 𝜙𝜙1) =  𝜔𝜔𝐴𝐴1 cos(𝜔𝜔𝑡𝑡1 + 𝜙𝜙1)  

Because the mass of the platform is the same before and after the impulse, the masses are all the same: 𝑚𝑚1 = 𝑚𝑚2 =
𝑀𝑀. If we substitute these expressions into equation 6, we get 

𝑀𝑀𝜔𝜔𝐴𝐴2 cos(𝜔𝜔𝑡𝑡1 + 𝜙𝜙2) −𝑀𝑀𝜔𝜔𝐴𝐴1 cos(𝜔𝜔𝑡𝑡1 + 𝜙𝜙1) =  −𝐽𝐽 
𝑀𝑀𝜔𝜔𝐴𝐴2 cos(𝜔𝜔𝑡𝑡1 + 𝜙𝜙2) =  𝑀𝑀𝜔𝜔𝐴𝐴1 cos(𝜔𝜔𝑡𝑡1 + 𝜙𝜙1) −  𝐽𝐽 (8) 

Dividing out the 𝑀𝑀𝜔𝜔 and defining 𝐼𝐼 = 𝐽𝐽/𝑀𝑀𝜔𝜔, our new equation is 
𝐴𝐴2 cos(𝜔𝜔𝑡𝑡1 + 𝜙𝜙2) =  𝐴𝐴1 cos(𝜔𝜔𝑡𝑡1 + 𝜙𝜙1) −  𝐼𝐼. 

Our two boundary conditions for equation 7 are then given by 
𝐴𝐴2 sin(𝜔𝜔𝑡𝑡1 + 𝜙𝜙2) = 𝐴𝐴1 sin(𝜔𝜔𝑡𝑡1 + 𝜙𝜙1) (9) 

 
and 

𝐴𝐴2 cos(𝜔𝜔𝑡𝑡1 + 𝜙𝜙2) =  𝐴𝐴1 cos(𝜔𝜔𝑡𝑡1 + 𝜙𝜙1) −  𝐼𝐼.  (10) 
We can square both equations and add them to get the following: 

 
Given the trigonometric identity sin2 𝑥𝑥  + cos2 𝑥𝑥  =  1, equation 11 can be rewritten as the following: 

𝐴𝐴22 = 𝐴𝐴12 − 2𝐴𝐴1𝐼𝐼 cos(𝜔𝜔𝑡𝑡1 + 𝜙𝜙1) + 𝐼𝐼2.  (12) 
Taking the square root of equation 12, we arrive at the following expression for 𝐴𝐴2: 

𝐴𝐴2 = �𝐴𝐴12 − 2𝐴𝐴1𝐼𝐼 cos(𝜔𝜔𝑡𝑡1 + 𝜙𝜙1) + 𝐼𝐼2.  (13) 

Our next goal is to find 𝜙𝜙2 now that we have 𝐴𝐴, starting with equation 9. 
𝐴𝐴2 sin(𝜔𝜔𝑡𝑡1 + 𝜙𝜙2) = 𝐴𝐴1 sin(𝜔𝜔𝑡𝑡1 + 𝜙𝜙1) 

sin(𝜔𝜔𝑡𝑡1 + 𝜙𝜙2) = 𝐴𝐴1 sin(𝜔𝜔𝑡𝑡1 + 𝜙𝜙1) /𝐴𝐴2 
sin−1(sin(𝜔𝜔𝑡𝑡1 + 𝜙𝜙2)) = sin−1(A1sin(𝜔𝜔𝑡𝑡1 + 𝜙𝜙1)/𝐴𝐴2) 

𝜔𝜔𝑡𝑡1 + 𝜙𝜙2 = sin−1(A1sin(𝜔𝜔𝑡𝑡1 + 𝜙𝜙1)/𝐴𝐴2) 
Subtracting 𝜔𝜔t1 from both sides, we get the following expression for 𝜙𝜙2: 

𝜙𝜙2 =  � sin−1(A1sin(𝜔𝜔𝑡𝑡1 + 𝜙𝜙1)/𝐴𝐴2) −𝜔𝜔𝑡𝑡1 𝑖𝑖𝑖𝑖𝐴𝐴1 cos(𝜔𝜔𝑡𝑡1 + 𝜙𝜙1) − 𝐼𝐼 > 0
π − sin−1(A1sin(𝜔𝜔𝑡𝑡1 + 𝜙𝜙1)/𝐴𝐴2) − 𝜔𝜔𝑡𝑡1 𝑖𝑖𝑖𝑖𝐴𝐴1 cos(𝜔𝜔𝑡𝑡1 + 𝜙𝜙1) − 𝐼𝐼 < 0 .

 (14) 
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Two examples are depicted in Figure 3 plotting the graph of 𝑧𝑧(𝑡𝑡). The dot shows when the impulse is applied. 
The left figure has the parameters 𝐴𝐴1 = 1, 𝜔𝜔 = 2𝜋𝜋, 𝜙𝜙1 =  −𝜋𝜋/4, 𝐼𝐼 = 0.3, and 𝑡𝑡1 = 3.1. The right figure has the 
parameters 𝐴𝐴1 = 1, 𝜔𝜔 = 2𝜋𝜋, 𝜙𝜙1 =  −𝜋𝜋/4, 𝐼𝐼 = 0.3, and 𝑡𝑡1 = 3.6. In Figure 3a, because the platform was moving up 
when receiving the downward impulse, the amplitude decreased in the left figure. In Figure 3b, because the platform 
was moving down when receiving the downward impulse, the amplitude increased in the left figure. The impulse 
increased the velocity of the platform. 
 
The mathematical model of a platform with multiple impulses 
 
We can expand our current mathematical model to account for the effect of multiple simultaneous impulses on the 
platform. Using the soldier analogy, the soldiers would walk in unison at a constant velocity on the bridge, exerting 
an impulse −𝐽𝐽 each time they land a foot on it. Let 𝑇𝑇 be a positive number where 𝑡𝑡𝑛𝑛 = 𝑛𝑛𝑇𝑇. At each time 𝑡𝑡𝑛𝑛, the 
platform is subjected to an impulse for each non-negative integer 𝑛𝑛. For example, the time interval 𝑇𝑇 between each 
impulse could be 0.2 seconds, so the platform would be subjected to an impulse at 0 seconds, 0.2 seconds, 0.4 seconds, 
0.6 seconds, etc. Equation 5 can be written as the following: 

𝑧𝑧 = 𝐴𝐴𝑛𝑛 sin(𝜔𝜔𝑡𝑡 + 𝜙𝜙𝑛𝑛), where 𝑡𝑡𝑛𝑛−1 < 𝑡𝑡 < 𝑡𝑡𝑛𝑛.  (15) 
Similarly, we can generalize equations 13 and 14 to get the following: 

𝐴𝐴𝑛𝑛+1 = �𝐴𝐴𝑛𝑛2 − 2𝐴𝐴𝑛𝑛𝐼𝐼 cos(𝜔𝜔𝑡𝑡𝑛𝑛 + 𝜙𝜙𝑛𝑛) + 𝐼𝐼2 
and 

𝜙𝜙𝑛𝑛+1 =  sin−1(Ansin(𝜔𝜔𝑡𝑡𝑛𝑛 + 𝜙𝜙𝑛𝑛)/𝐴𝐴𝑛𝑛+1) − 𝜔𝜔𝑡𝑡𝑛𝑛 
Our starting condition is 𝐴𝐴0 = 0 because the platform is not moving before the first impulse. We also have 𝜙𝜙𝑛𝑛+1 = 0 
and 𝐴𝐴𝑛𝑛+1 = 0, otherwise 

𝜙𝜙𝑛𝑛+1 = 𝜋𝜋 −  sin−1(Ansin(𝜔𝜔𝑡𝑡𝑛𝑛 + 𝜙𝜙𝑛𝑛)/𝐴𝐴𝑛𝑛+1) − 𝜔𝜔𝑡𝑡𝑛𝑛  𝑖𝑖𝑖𝑖 𝐴𝐴𝑛𝑛  cos(𝜔𝜔𝑡𝑡𝑛𝑛 + 𝜙𝜙𝑛𝑛) − 𝐼𝐼 < 0 
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Figure 4 shows a plot of 𝑧𝑧(𝑡𝑡). In this example, 𝜔𝜔 = 2𝜋𝜋, 𝐼𝐼 = 0.2, and 𝑇𝑇 = 1. Because the function’s amplitude 
grows linearly with time, 𝑧𝑧(𝑡𝑡) is not a periodic function of 𝑡𝑡. The figure corresponds to a resonant case. The bridge 
would then collapse at a certain amplitude because of the many impulses. 
 

Discussion 
 
There are a few key findings throughout the paper. The paper first utilizes Hooke’s Law and Newton’s Second Law 
to create a second order differential equation of the motion of the bridge whose solution is a sine wave. Substituting 
in values for momentum for a singular impulse on the bridge, the paper then solves for the amplitude and 𝜙𝜙 after the 
impulse. Adapting this model for impulses at different times and plotting the output graphs, the bridge is shown to 
exhibit resonance. A potential extension of this research would be to include a model for damping similar to equation 
2 where 𝑀𝑀𝑥𝑥" +  𝑐𝑐𝑥𝑥′ +  𝑘𝑘𝑥𝑥 =  −𝑀𝑀𝑀𝑀 where 𝑐𝑐 is a damping coefficient that can be found to intentionally help design 
bridges to prevent resonance (García et al., 2003). The limitations of these models are clear and illuminate opportuni-
ties for more experimentation in the future. Primarily, the resonant models only account for one impulse applied at a 
time. This, frankly, is quite unrealistic in the real world given many people walk across bridges and exert impulses on 
the bridge of different sizes at different times. A model that could account for the oscillations while allowing for 
various sized impulses at different times could more accurately model soldiers walking across a bridge. Furthermore, 
the model is not fully realistic for most types of bridges. Although the beam bridge is mentioned in the introduction, 
given this bridge is supported on two sides, the bridge is not free to move up and down, rather only in the center, 
creating a U-shape. We do not analyze how the bridge would bend or to what extent a bridge could bend in the center 
before snapping (Gou et al., 2018). Also, we leave out critical aspects of bridge-building including the bridge moving 
side to side simultaneously, damped oscillators, torsion, and aeroelasticity. Primarily, most bridges have dampening 
mechanisms to prevent them from oscillating to the point of collapse, particularly during a resonant case described 
above. We also neglect air resistance and its effect on the torsion (twisting) of the bridge. Aeroelastic “flutter” is when 
a structure has positive feedback between the body’s deflection (in this case air) and the force exerted by the fluid 
flow (air as well) (Deshpande, 2016). A famous example of “flutter” caused the Tacoma Narrows bridge to fall among 
many other examples (Arioli & Gazzola, 2014). 
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