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ABSTRACT 

The western U.S. has been experiencing a mega-scale drought since 2000. By killing trees and drying out forests, the 
drought triggers widespread wildfire activities. In the 2020 California fire season alone, more than 10.3 million acres 
of land were burned and over 10000 structures were damaged. The estimated cost is over $12 billion. Drought also 
devastates agriculture and drains the social and emotional well-being of impacted communities. This work aims at 
predicting the occurrence and severity of drought, and thus helping mitigate drought related adversaries. A machine 
learning based framework was developed, including time series data collection, model training, forecast and visuali-
zation. The data source is from the National Drought Monitor center with FIPS (Federal Information Processing 
Standards) geographic identification codes. For model training and forecasting, a Bayesian structural time series 
(BSTS) based statistical model was employed for a time-series forecasting of drought spatially and temporally. In the 
model, a time-series component captures the general trend and seasonal patterns in the data; a regression component 
captures the impact of the drought in measurements such as severity of drought, temperature, etc. The statistical meas-
ure, Mean Absolute Percentage Error, was used as the model accuracy metric. The last 10 years of drought data up to 
2020-09-01 was used for model training and validation. Back-testing was implemented to validate the model . After-
wards, the drought forecast was generated for the upcoming 3 weeks of the United States based on the unit of county 
level. 2-D heat maps were also integrated for visual reference.  

Introduction 

Since 2000, the western United States has entered the beginning of a megadrought, the second worst in 1200 years. 
The U.S. Drought Monitor places 60% of the western states under severe, extreme or exceptional drought conditions 
[1]. The impacts of drought come in a variety of forms. Lack of water supplies devastates the agricultural industry. 
Drought creates flammable fuel from dry vegetation, which feeds on rampant wildfires. Prolonged  drought also bur-
dens social and emotional wellbeing of the impacted communities, as quoted “if the land is sick, we are sick”. 
Drought is by nature complex and stochastic. It is very challenging to determine when a drought will start or end. 
Drought forecasting can help to establish drought mitigation strategies in advance. However, drought prediction is 
often marked by uncertainty. Therefore statistical modeling techniques with uncertainty estimation are necessary for 
a reliable forecast.  

Bayesian inference is a well-developed statistical framework that allows practitioners to both intuitively in-
corporate prior beliefs about certain data into the modeling process, and obtain comprehensive uncertainty estimates 
about predictions [2]. Bayesian approaches provide such uncertainty quantification by directly producing posterior 
predictive distributions, rather than the point forecasts generated by traditional Frequentist approaches [2]. Bayesian 
methods can also be used to generate point forecasts by simply taking the mean of the posterior predictive distribution 
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output. Because these tasks are naturally incorporated into Bayesian analysis and are thus more intuitive to perform. 
Accordingly, Bayesian methods are often preferred for use in contexts requiring uncertainty estimation [3-5].  

To generate the drought-volume forecasts with uncertainty estimate, we used the Bayesian structural time 
series (BSTS) model to perform feature selection, time series forecasting, and causal impact inference. Historical 
climate records such as temperature and precipitation data were applied to the Bayesian statistical model to generate 
probabilistic drought prediction. 

Bayesian structural time series model (BSTS) is a structural or state space model. Such models are defined 
by two equations. The first, called the observation equation: 
 
Equation 1:  
 

Yt = ZT
t αt + 𝜖𝜖 t 

 
𝜖𝜖 describes the relationship between our observed target, Yt , and a vector of latent variables αt, called the latent state 
of the system. The second equation, called the transition equation, models the evolution of this latent state over time:  
 
Equation 2:  
 

αt+1 = Ttαt + Rtηt 

 
The vectors Zt, Tt, Rt are structural parameters that are constructed according to the evolution dynamics of the modeled 
system. These parameters render structural models extremely flexible. Many classical time-series models such as auto-
regressive models can be expressed equivalently as structural models [6].  

Specific models are constructed with different trend components and seasonality structures. An example of 
such a model is described below, a local-level trend µt, a seasonal pattern τt , and external regressors xt:  
 
Equation 3 (a):  
 

Yt = µt + τt + βTxt +  𝜖𝜖t, 𝜖𝜖 t ∼  N (0, σ2
 𝜀𝜀) 

 
Equation 3 (b):            
                                          

µt+1 = µt + ηt, ηt ∼  N (0, σ2
η) 

 
Equation 3 (c):  
 

τj,t+1 = τj,t × cos(λj ) −  τ ∗j,t × sin(λj ) + ωj,t 
 
Equation 3 (d):  
 

τ∗j,t+1 = τ∗j,t × cos(λj ) −  τ j,t × sin(λj ) + ω∗j,t 
 
 
 
Equation 3 (e): 
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τt =∑𝑘𝑘
𝑗𝑗=1 τj,t 

 
Equation 3 (f):

λj = 2πj/s                                                                                                     

where j = 1, .., k is the j-th seasonal frequency, s is the length of the longest seasonal cycle in number of time-steps, 
and Yt is our observed target. The local-level trend µt models the evolution of the latent state of the system, as described 
in equation (3b), is assumed to evolve following a random walk in levels. This choice reflects a belief in no strong 
upward or downward trend at a short-term regular level.  

In the Bayesian structural time series (BSTS) model, we impose Spike-and-Slab prior on the regression co-
efficients, which enables automatic feature selection via parameter shrinkage [7]. For instance, we impose an inclusion 
probability of 1 on the temperature feature and 0.5 on all others. Additionally we set the elements of the prior mean 
vector to some value like ± 0.5, with the sign of each element determined by the assumed directionality of the rela-
tionship between the corresponding feature and drought volume. Our model also incorporates weekly, monthly, and 
quarterly seasonality. As are typical with Bayesian statistical models, our forecasting model is fit using a Markov  
 
Chain Monte Carlo (MCMC) method [8].
 
The statistical measure, Mean Absolute Percentage Error, or MAPE (9), is used as the model accuracy metric. It 
measures the accuracy as a percentage and can be calculated as the average absolute percent error for each time period:  
 
Equation 4: 
 

MAPE = 1
𝑇𝑇
∑𝑇𝑇
𝑡𝑡=1 �𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡 −𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝑡𝑡𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡

𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝑡𝑡𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡
�                                      

 
where T = {t1, t2, .., tn} is the time step t. It is computed across the total time periods of prediction.    
 
Equation 5: 
 

Accuracy = 1 - MAPE 
Equation 6: 
 

Model Error = (min_MAPE, max_MAPE)                                                                 
 

Methods 
 
The system framework consists of the following components, as illustrated in Figure 1.   

• Data preparation which includes data loader and data pre-processor. Data loader loads the past data till the 
latest data into the system  

• Data pre-processor performs standard data cleaning procedure  
• Data visualization including heat-map visualizes the actual and predicted drought at national and state levels  
• Drought forecasting predicts severity of drought at national and state levels for upcoming 3 week periods  
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Figure 1: System Framework  
 
Data source  
 
The historical climate data source is the United States Drought Time-Series Data (USDM). It describes the extent and 
severity of the drought at national and state levels. The data is updated weekly. The severity level of the drought is 
defined from D0 to D4, with D0 representing the percentage of the county that is abnormally dry, D1 moderate 
drought, D2 severe drought, D3 extreme drought and D4 exceptional drought. The FIPS (Federal Information Pro-
cessing Standard) code is used to uniquely identify each county. The data source is obtained from  
https://droughtmonitor.unl.edu/ (2015-2020). 
 
User Interface components  
 
The open source Dash framework (https://plotly.com/dash/open-source/) is used for data analysis. The underlying 
code for this analysis is written in Python. A Plotly Python graphing library is used to visualize the data and generate 
2D drought heat-maps. The application is deployed on the Heroku Cloud Application Platform.  
 
Plotly Graphing Components  
 
Three main graphing libraries are used for analyzing the drought data collected through the US Drought Monitor 
(USDM, https://droughtmonitor.unl.edu/). A basic table and trend-line is used to display core statistics and project 
future trends generated by the predictive algorithms. A choropleth map is selected to represent the spatial variation of 
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drought severity using colored polygons. This map is configured with standard Federal Information Processing Series 
(FIPS) codes for geometric information and the USDM drought data identified by FIPS code as the input data. Dif-
ferent input options such as drop down menu and slider bar are provided as controls to promote an ease of data selec-
tion. One example of a generated 2D heatmap and corresponding table are shown in Figure 2.  

 
 
 

 
 
Figure 2: Example of 2D heatmap to visualize drought distribution 
 

Results  
 
The model was trained using weekly historical time-series data collected from the last 10 years’ available data up to 
2020-09-01. To evaluate whether and to what degree the model gives an accurate projection of drought volume against 
actual volume, back tests were conducted using available data from 2020-06-01 to 2020-09-01 to answer these ques-
tions: Is the forecast different from the actual performance data? If so, what is the error percentage? As shown in Table 
1 is the accuracy of our suite of models applied to national and different states.  
 
 Table 1: Model Evaluation using national and three states as examples 

States  Accuracy  MAPE  Model Error 

National  93.2%  6.8%  4-7% 

California  91.9%  8.1%  5-9% 

Colorado  90.3%  9.7%  3-8% 

Oklahoma  89.2%  10.8%  3-7% 
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Representative graphs are generated to describe the backtesting of our model suite applied to the national and 

states.  Figure 3 (a) shows one example at national level, where the drought index is plotted from 2016 to 2020 time 
period, where the data of 2016 up to September 2020 is from historical climate data (United States Drought Time-
Series Data, USDM), and the data of October 2020 is generated from this statistical model.  Backtesting method was 
applied to verify the trained model by comparing actual data with predicted data from June to Sept of 2020. The labels 
with original,  pre_lowerbound, pre_upperbound and pre are the ground truth value, lower bound, upper bound and 
predicted values respectively. Figure 3(b) are magnified graphs depicting the comparison among actual data (i.e. orig-
inal) and predicted data (i.e., pre_, pre_upperbound, and pre_lowerbound) from June, July, August and September 
2020 respectively. The calculated Mean Absolute Percentage Error (MAPE) at national level is 4-7%. Figure 3(c) is 
the projected drought of upcoming three weeks at national level using the validated model including first, second and 
third weeks of October 2020.  
 

 
 
Figure 3 (a)  
 

 
Figure 3 (b) 
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Figure 3 (c) 
 
Figure 3. national level drought data training and backtesting (a), high magnification graphs describing training and 
backtesting data of June, July, August and September, 2020 (b) and next three weeks’ forecast from first, second and 
third weeks of October 2020 (c) 
 

 
Figure 4. drought data training and backtesting (a), and next three weeks’ forecast (b) of Colorado State, the forecast 
data ranges from first, second to third weeks of October 2020.   
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Figure 4. describes one example of the data training and backtesting (a) and forecast (b) for Colorado state respec-
tively. It is worth noting that the upcoming three weeks trends toward more dryness in the category of severe dry and 
maybe worth considering drought alertness and preventative actions for the state of Colorado.  
 

 
Figure 5. drought data training and backtesting (a), and next three weeks’ forecast (b) of Oklahoma State, the forecast 
data ranges from first, second to third weeks of October 2020.   
 
Figure 5. shows another example of training and forecasting data for Oklahoma state. For both these two examples, 
model training and forecasting data is for the time period of first, second and third week of October 2020, and the rest 
of the data is from historical data base. The drought index shown in y axis indicates a moderate drought condition and 
is considered as low risk for the state of Oklahoma for the first, second and third weeks of October 2020.  
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2-D heat maps were generated to visualize the drought contour in the United States at different time periods using a 
Dash framework. Units are by county area. Figure 6 shows examples of snapshots of drought heat-maps at the national 
levels in 2017 and 2020 respectively, where the model generated data refers to October 2020, and the rest of the data 
is from a historical database (United States Drought Time-Series Data, USDM).  
 

 
 
Drought heatmap, Jan, April, June and October, 2017 
 

 
 
Drought heatmap, Jan, April, June and October, 2020 
 
Figure 6. 2D heatmap to visualize drought at 2017 (a) and 2020 (b), where the heatmap of October 2020 is from 
model prediction whereas other plots from historical data.   
Though a few examples are demonstrated in this main context, this work was carried out for the entire United State 
with the modeling resolution at county level. The complete dataset including model training and forecasting was 
deployed at https://cal-droughts.herokuapp.com/.  
 

Discussion 
 
A Bayesian structural time series (BSTS) based statistical model was used to analyze historical drought data and then 
predict upcoming drought situations. Mean Absolute Percentage Error (e.g. MAPE), was chosen to measure the mod-
eling prediction accuracy.  As shown in Table 1, 6-10% MAPE is calculated from back-testing and validation with 
model error rate of 3-9%.  

The prediction of the upcoming three weeks’ drought was plotted for national average as well as individual 
states using the calibrated BSTS model. Figure 3-5 shows a few examples of drought at national and state levels such 
as Colorado and Oklahoma. Similar graphs can be plotted for the rest of states as well. Take one example of drought 
prediction data from Colorado state, represented by Figure 4(b) we can expect that the drought trends toward more 
severe as quantified by y axis drought index with a range indicating upper and lower bounds of this prediction.  
2-D heat maps (Figure 6) clearly shows that the degree of drought in each season grows progressively severer from 
2017 to 2020. The extent of drought area and severity of drought concentrates on the western United States and ex-
pands further into the midwest in the calendar year of 2020, indicating the overall trend of more alarming drought 
conditions. The forecasting graph (Figure 6b, October) shows more drought across the United States map, with higher 
concentration in the Western State, by comparing actual historical data in September 2020. The data visualization 
through Heroku platform enables users to access the current and future drought situation of their specific interest, and 
thus support local community based drought mitigation strategies.  
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Currently, this BSTS model is developed for short-term forecasting of three weeks. In the future, longer term 
forecasting is possible if we develop the framework to incorporate the effect of seasonality, trend and more regressors 
from various time series data.  
In the future, this research framework will be further developed to predict wildfire occurrence which is a more complex 
environmental issue. The interaction of heat, drought, and probability of fire ignition are the major factors for the 
model input, followed by the model calibration and execution. Once proved effective, this research could be connected 
with a US satellite backed database to provide an on-time alerting system for drought and fire risk in the long term.  
 

Conclusion  
 
Drought devastates the western United States socially and economically with immeasurable long term effects. This 
work focuses on predicting when and where drought will happen. The potentially impacted communities can use this 
data to proactively mitigate drought induced disasters. A Bayesian structural time series model (BSTS) was employed 
to evaluate the severity of drought at national and state levels. The historical data was obtained from the National 
Drought Monitor center (NDMC). First, a “Training and back-testing” method was applied to validate the model using 
available data. The model accuracy was estimated to be 91-97% based on the training data. Then, an upcoming 3 
weeks of drought forecast data was generated using the validated model at state and national levels. 2-D heat maps 
were also plotted out to visualize the severity, distribution and evolution of droughts.  
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