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ABSTRACT 

Solvation free energy is a key indicator of the effectiveness of a drug molecule. There are several applications of 
predicting the solvation free energies of chemical compounds using quantum mechanical methods. However, these 
methods take a long time and are costly. For that reason, the application of recently developed artificial intelligence 
techniques for the prediction of solvation free energies is becoming increasingly valuable in drug discovery to address 
time and the high-cost issues with traditional quantum mechanical approaches. In this paper, we present application 
of two different artificial intelligence models for predicting solute-solvent free solvation energy for Covid-19 drug 
design. The research involves building, training, evaluating and comparing the performances of the two models on a 
large dataset, then predicting solvation free energies for 138 known APIs and 28 organic solvents that could potentially 
be used as a Covid-19 medicine. The potential repurposing of 138 drugs for Covid-19 from solubility perspective is 
novel. We demonstrate the application of the AI models and derive several conclusions regarding suitability of the 
APIs and their efficacy. We conclude our research by providing insights on how our work can be put to future use 
towards drug development. 

Introduction 

The search for an effective treatment for Covid-19 disease is an ongoing global research effort. Our research seeks to 
contribute to that effort by systematically estimating the solvation energy of a number of known drug APIs paired 
with a number of known organic solvents. The objectives are two-fold, one to demonstrate use of Artificial Intelligence 
(AI) models in drug design, and second, to find promising pairs of Active Pharmaceutical Ingredients (APIs) and 
organic solvents to treat Covid-19 disease. This effort to find an effective repurposed drug for Covid-19 among several 
known APIs (or solutes) is novel which directly contributes to the knowledge regarding potential cure for Covid-19. 

The solute-solvent pairing to obtain maximum solubility is an important requirement in drug design, because 
solubility helps in drug absorption and retention which in turn determines the bioavailability of the API, i.e., portion 
available for action against the target. It is a tedious task to compute solubility in a lab experimentally (in-vitro); for 
that reason, reliable computational models (in-silico) for predicting the solubility of an API against several solvents 
are sought-after in drug discovery because in-silico models can assess the most promising solvents for a given API in 
a much shorter amount of time. The in-silico model outcomes can then be tested further in the laboratory (in-vitro) to 
further close-in on the most promising solute-solvent pairs for further in-vivo studies. 

The metric for solubility is solvation free energy; we optimize solvation free energy to obtain the most prom-
ising solute-solvent pairs. Solvation energy is the amount of energy generated when a solute is dissolved in a solvent. 
A negative solvation energy is associated with an exothermic reaction, whereas a positive solvation energy is associ-
ated with an endothermic reaction. 
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Typically, the solvation energy ranges from -5 to -20, where the smaller the solvation energy (meaning larger 
negatives) implies more solubility and therefore better solute-solvent pairing. 

Previously, quantum mechanical methods used for the prediction of solvation energy (Duarte Ramos Matos 
et al., 2017, Kröger et al., 2020) generally involve high computational costs and time; and for that reason, Artificial 
Intelligence methods are being increasingly utilized for the prediction of solvation energy. In this research we imple-
ment two different but competing Artificial Intelligence models to estimate the solvation energy of several solute-
solvent pairs. The two models are described next. 
 
CIGIN2 model 
 
CIGIN2 model (Pathak et al., 2020), an acronym for Chemically Interpretable Graph Interaction Network, is a graph 
neural network model to predict solvation free energies. There are 3 parts in CIGIN2 model: message passing (Gilmer 
et al., 2017), interaction mapping, and prediction phase. 

The first phase, Message passing, is a neural network in which inter-atomic interactions are computed within 
solute and solvent molecules represented as molecular graphs. A molecule represented as a graph has the atoms rep-
resented as the nodes and the bonds as the edges. Both the nodes and the edges are characterized by a set of features. 
These feature vectors are constantly updated over a certain amount of time steps based on their environment (specifi-
cally the neighboring nodes). The final feature vectors are obtained by gathering layers. 

The second phase involves computation of a solute-solvent interaction map which captures the electronic and 
steric factors that govern the solubility of molecules. This interaction map can provide useful insights on different 
solute and solvents’ features impact on solvation free energy. 

And the third phase is about prediction of solvation free energies using solute-solvent interaction maps and 
features from the message passing phase. This involves passing the outputs through the set2set readout layer (Vinyals, 
Bengio, and Kudlur 2016), followed by a fully connected multi-layer perceptron, using the rectifier unit activation 
(ReLU) function, with an output layer containing the final solvation free energy predictions. 

CIGIN2 model is trained using MNSOL data of solvation energies of 2049 pairs of 418 solutes and 91 sol-
vents, a validation dataset of 228 pairs, and a test dataset of 253 pairs. 
 

 
 
Figure 1. CIGIN2 Model Architecture 
 
DELFOS model 
DELFOS model (Lim et al., 2019), a Deep Learning model for solvation free energies in generic organic solvents, is 
a Quantitative Structure–Property Relationship (QSPR) method which predicts solvation free energy of organic solute 
and solvents from their empirical or structural features. 
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DELFOS model uses two separate solvent and solute encoder networks (sub-neural networks). The primary 
architecture of the encoder is based on two bidirectional recurrent neural networks. The encoders first embed the 
chemical structure of the given solute and solvent into a molecular descriptor using Mol2Vec word embedding model 
- where an atom or a substructure is a word and a molecule is a sentence (Jaeger et al., 2018, Pennington et al., 2014). 
The Mol2Vec word embedder uses the Morgan algorithm to generate substructure vectors for each atom based on 
their environment (Morgan 1965). Then, the encoder uses a bi-directional RNN layer (Schuster et al., 1997); aug-
mented with a dot shared dot product attention layer to extract important sub-structures from outputs of recurrent 
neural networks (Bahdanau et al., 2014). The interaction between the hidden states in the shared attention layer can 
offer information about which sub-structures play a dominant role in the solvation process.  

Finally, the 3rd sub-neural network, the mapping function or the predictor neural network has a single fully 
connected perceptron layer with a rectifier unit (ReLU) and an output layer. It uses the concatenated feature of the 
solvent and solute [u; v] as an input. The predictor neural network with a fully connected MLP layer calculates the 
solvation free energy of a given solvent–solute pair using the feature vectors from the two encoders. 

DELFOS model is also trained using MNSOL data of solvation energies of the same set of 2049 pairs of 418 
solutes and 91 solvents as for CIGIN2. And the same validation dataset of 228 pairs, and test dataset of 253 pairs. 
 

 
 
Figure 2. DELFOS Model Architecture 
 
List of Solutes and Solvents 
In this research, we compiled a list of 138 solutes based on extensive literature review of known APIs that could treat 
Covid-19 disease. These APIs are listed in Table 1. Using existing known APIs to treat a different disease, different 
from what the API was originally developed to treat, is known in the literature as Drug Re-purposing or “DRP” effort. 
DRP for Covid-19 is being investigated the world over and this research contributes to DRP efforts by examining a 
new list of known APIs from solubility perspective as a Covid-19 medicine.  

We test solubility of 138 known APIs against a list of 28 known organic solvents. We compiled solvents list 
based on extensive literature review of the known solvents. These solvents are listed in Table 2. 
 
Table 1. List of 138 Known APIs 
 

A.  Alpha amino acids B. Anaplastic lymphoma kinase C.  Anthelmintics 
1 CC-223 2 LDK378 3 Ivermectin 
D.  Antiarrhythmic E.  Antibacterial F.  Antibiotic 
4 Dronedarone HCl 5 Hexachlorophene, 6 Sulfadoxine  7 Azithromycine 
G.  Anticancer H.  Anticholinergics I.  Antidepressants 
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8 Abemaciclib, 9 Amuvatinib, 10 
Carboxyamidotriazole, 11 
Gilteritinib, 12 GSK2606414, 13 
Homoharringtonine, 14 Imatinib 
Mesylate, 15 LDE225, 16 LGK-974, 
17 LY2228820, 18 Osimertinib me-
sylate, 19 Pevonedistat, 20 Pexidar-
tinib, 21 Regorafenib, 22 Sorafenib, 
23 Tamoxifen Citrate, 24 Tyrphos-
tin, 25 Vatalanib 

26 Benztropine Mesylate 27 Clomipramine Hydrochloride 

J.  Antidiarrheal K.  Antifibrotic L.  Antifungal 
28 Loperamide 29 PF-670462 30 Cloconazole, 31 Oxiconazole, 32 

Ravuconazole, 33 Chlormidazole, 
34 Ketoconazole 

M.  Antihistamine N.  Antihypertensive O.  Antiinflammatory 
35 Clemizole hydrochloride, 36 Me-
quitazine, 37 Loratadine 
38 Ebastine 

39 Berbamine hydrochloride 40 PH-797804, 41 CVL218 

P. Antileukemia Q. Antilipemic R. Antimalarial  
42 Tioguanine, 43 Alvocidib, 44 AI-
10-4 

45 Triparanol 46 Quinacrine hydrochloride mono-
hydrate, 47 Mefloquine Hydrochlo-
ride, 48 Amodiaquin Dihydrochlo-
ride Dihydrate, 49 Amodiaquine hy-
drochloride, 50 Amodiaquin Hydro-
chloride, 51 Chloroquine, 52 Chlo-
roquine Phosphate, 53 Hy-
droxychloroquine Sulfate 

S. Antimethemoglobinemia T. Antiparasitic U. Antiproliferative 
54 Methylene blue 55 Oxyclozanide C1NDSS5 
V. Antiprotozoal W. Antipsychotic X. Antiretroviral 
57 Emetine 58 Chlorpromazine Hydrochloride, 

59 Fluspirilene, 60 Penfluridol, 61 
Thioridazine hydrochloride, 62 
CBIPES 

63 Amprenavir, 64 Atazanavir, 65 
Dapivirine, 66 Dolutegravir, 67 In-
dinavir, 68 Lopinavir, 69 Nelfinavir, 
70 Saquinavir, 71 Tipranavir 

Y. Antiseptic Z. Antispasmodic AA. Antitapeworm 
72 Cetylpyridinium chloride, 73 Oc-
tenidine 

74 Drotaverine 75 Niclosamide 

AB. Antitumor AC. Antiviral AD. Anxiolytic 
76 IPAG, 77 Tetrandrine 78 Arbidol, 79 Darunavir, 80 Favi-

piravir, 81 Penciclovir, 82 Remde-
sivir, 83 Ribavirin, 84 Nitazoxa-
nide, 85 Tilorone, 86 Harringtonine 

87 ZK-93423, 88 Opipramol dihy-
drochloride, 89 Etifoxine 

AE. Atypical antipsychotics AF. Beta blockers AG. Bioactive isoflavone 
90 Adoprazine, 91 Brexpiprazole 92 Oxprenolol hydrochloride 93 Osajin 
AH. Biphenyls AI. Bisbenzylisoquinoline alka-

loids 
AJ. Calcium entry blocker 
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94 Mibampator 95 Cepharanthine 96 Flunarizine 
AK. Capsaicin-induced antihyper-
algesia 

AL. Chronic pancreatitis AM. Coronary vasodilator 

97 AMG-9810 98 Camostat 99 Lidoflazine 
AN. Corticosteroids AO. Cystic fibrosis AP. Dopamine antagonist 
100 Ciclesonide, 101 Loteprednol 
etabonate 

102 Ivacaftor 103 Thiethylperazine Maleate 

AQ. Dopamine D3 receptor AR. Estrogen agonist AS. Estrogen receptor 
104 BP-897 105 Bazedoxifene, 106 Toremifene 

Citrate 
107 Droloxifene((E)-3-Hydroxy ta-
moxifen) 

AT. Heart Treatment AU. Hutchinson-Gilford progeria 
syndrome 

AV.  Immunomodulators 

108 Digoxin, 109 Lanatoside C, 110 
Ouabain 

111 Lonafarnib 112 JTE-013 

AW. Immunosuppressant AX. Multidrug-resistant cancer 
cells 

AY. Opioid receptor 

113 Cyclosporine 114 Isoosajin, 115 Isopomiferin 116 SB-612111 
AZ. Opium alkaloid antispasmodic BA. Oral urinary analgesic BB. Oral anticholesterol 
117 Papaverine 118 Phenazopyridine 119 Asimibe 
BC. Ovulatory stimulant BD. Peripheral vasodilator BE. Phenothiazines 
120 Clomiphene Citrate 121 Ethaverine 122 Fluphenazine Dihydrochloride, 

123 Promethazine Hydrochloride 
BF. Photodynamic Therapy BG. Platelet thrombopoietin re-

ceptor 
BH. Progestin 

124 Hematoporphyrin 125 Avatrombopag 126 Hydroxyprogesterone caproate 
BI. Prophylactic antianginal BJ. Proton-pump inhibitors BK. Purine analogue 
127 Perhexiline maleate 128 Omeprazole 129 Thioguanosine 
BL. Pyranoxanthones BM. Respiratory stimulant BN. Sclerosing agent 
130 Dihydrogambogic acid 131 Almitrine 132 Polidocanol 
BO. Synthetic organoselenium BP. Thrombocytopenia BQ. Thrombopoietin receptor ago-

nists 
133 Ebselen 134 Eltrombopag 135 Lusutrombopag 
BR. Treatment of fungal infection BS. Vasodilators BT. VRAC inhibitor 
136 Terconazole Vetranal 137 Alprostadil 138 DCPIB 

 
Table 2. List of 28 known Organic Solvents 
 

1 Acetic acid 2 Heptane 3 Acetone 4 Isobutyl acetate 
5 Anisole 6 Isopropyl acetate 7 1-Butanol 8 Methyl acetate 
9 2-Butanol 10 3-Methyl-1-butanol 11 Butyl acetate 12 Methylethyl ketone 
13 tert-Butylmethyl ether 14 2-Methyl-1-propanol 15 Dimethyl sulfoxide 16 Pentane 
17 Ethanol 18 1-Pentanol 19 Ethyl acetate 20 1-Propanol 
21 Ethyl ether 22 2-Propanol 23 Ethyl formate 24 Propyl acetate 
25 Formic acid 26 Triethylamin 27 Water 28 N, N-Dimethylformamide 
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We use two AI models CIGIN2 and DELFOS to predict solvation energy for each of the 138 APIs with each 
of the 28 solvents, with the objective of discovering most promising solute-solvent pairs on the basis of lowest solva-
tion energy. 

The predictions of solute-solvent solvation energies are presented in Figure 3 from CIGIN2 model and in 
Figure 4 from DELFOS model. 
 

 
 
Figure 3.  CIGIN2 Model Solvation Energy Predictions for 138 API Solutes x 28 Solvents 
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Figure 4. DELFOS Model Solvation Energy Predictions for 138 API Solutes x 28 Solvents 
 
MNSOL Dataset 
In this research, the CIGIN2 and DELFOS models are trained using The Minnesota Solvation Database, created by 
the Department of Chemistry, Chemical Theory Centre, and Minnesota Supercomputing Institute, University of Min-
nesota, Minneapolis, USA. The database consists of a total of 3037 solvation free energy data points. This composes 
of experimental aqueous solvation free energies of 274 neutral solutes, 31 clustered ions consisting of a single water 
molecule and 112 ionic solutes. Additionally, it consists of 87 solvation free energies of water and 11 organic solvents 
for 64 neutral solutes as well as 2002 solvation free energies between 322 neutral solutes in 90 organic solvents. The 
solutes at most consist of the element’s H, C, N, O, F, Si, P, S, Cl, and Br. 

In total, MNSOL has 3037 experimental free solvation energies of 790 unique solutes in 92 solvents 
(Marenich et al., 2012) including neutral solutes, charged solutes, and samples of transfer free energies, which after 
removal of charged solutes and sample of transfer free energies results in a final usable dataset of 2530 unique com-
binations of solute and solvent in this paper. 
 
Model Training/ Validation/ Testing 
Both AI models CIGIN2 and DELFOS in this research utilize the same MNSOL dataset of solvation energies and the 
exact same training, validation and test datasets. The final usable MNSOL dataset containing 2530 data points was 
split as follows: 80% train (2049 data points), 10% validation (228 data points), and 10% test (253 data points). 

The models were trained on 80 epochs with a batch size of 32 on the training dataset. The model states with 
the lowest MAE score on the validation set were saved and used to evaluate each models’ performance on the test set 
using 3 evaluation metrics: 

 
1. Mean Absolute Error: Calculated as the average of the absolute values of the residuals 
2. Root Mean Squared Error - Calculated as the square root of the average of the square of the residuals 
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3. Mean Absolute Percentage Error - Calculated as the average of the absolute values of the percentages of the 
residuals.  

 
The code for both models was written in Python. CIGIN2 was executed using PyTorch, while DELFOS was 

designed and executed using PyTorch as well as Tensorflow. The PyTorch based models yield the following perfor-
mance metrics on the test set 
 
Table 3. CIGIN2 and DELFOS test set performance metrics and benchmark scores. 
 

Model MAE RMSE MAPE Benchmark* (RMSE) 

CIGIN2 0.5323 1.178 28.21 RMSE: 0.57** 

DELFOS 0.5615 1.304 36.64 RMSE: 0.57** 

 
*Note: Benchmark models’ RMSE mentioned here is from the respective research papers of CIGIN2 and DELFOS. 
**Note: RMSE difference between Benchmark and what we obtained can be partially attributed to the fact that the 
Benchmark models use 10-fold cross validation during training and testing whereas we use fixed partitions in order 
to enable apples-to-apples comparison of the two models’ performance. 
 

As shown in Table 3, CIGIN2 has a slightly better performance than DELFOS in terms of lower MAE, RMSE 
and MAPE. Therefore, when considering the results of these models for predicting the top solute - solvent pairs for a 
potential Covid-19 drug, CIGIN2 should be considered with greater weight. 

While our models did not result in comparable RMSE in Benchmark models, the performance is reasonable 
and is partially due to the fact that we use less training data to train our models compared to cross-validation approach 
used in respective Benchmark models.  
 

Discussion of Results 
 
We will now discuss the models’ predictions of the solvation free energies for the potential Covid-19 solutes - solvents 
pairs, namely the 138 solute x 28 solvent matrix. 

Firstly, we consider which of the 28 solvents do best and the worst across the 138 solutes, i.e., have the lowest 
and highest solvation free energies predicted by the 2 models. Lower solvation energy means the solute - solvent pair 
is likely to be more effective as a composition of a Covid-19 drug. To obtain these results, an algorithm was imple-
mented that calculates the weighted score of each solvent applied on the number of times its solvation energy was 
ranked 1st, or 2nd or 3rd for each solute. Weights applied were 0.5 for 1st rank, 0.3 for 2nd rank, and 0.2 for 3rd rank. The 
worst performing solvents were decided based on the number of times its solvation energy was ranked last for each 
solute. The best solvents yielding the lowest solvation energy by model are as follows: 
 
Table 4a. Top 5 solvents and corresponding weighted scores for each model 
 

Top Solvents (CIGIN2) Weighted Scores 
(CIGIN2) 

Top Solvents (DELFOS) Weighted Scores (DEL-
FOS) 

Anisole 37.3 1-Pentanol 63.5 
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Isobutyl Acetate 37.0 1-Butanol 26.2 

Butyl Acetate 29.4 Ethyl Formate 25.3 

1-Pentanol 16.3 3-Methyl-1-butanol 12.7 

3-Methyl-1-butanol 12.1 Water 6.1 

 
According to our research, across all 138 solutes, the two models indicate some common best solvents 

namely, 1-Pentanol and 3-Methyl-1-butanol in top 5 solvents going by lowest free solvation energy. As noted earlier 
we will give more weightage to CIGIN2 model results because this model has lower error (e.g., MAPE, MAE, and 
RMSE) compared to DELFOS model. 

Conversely, we also looked at the “worst” solvents i.e., ones with the highest solvation energy for each model.   
 
Table 4b. Worst performing solvent(s) for each model 
 

Model Worst Performing Solvent 1 Worst Performing Solvent 2 

CIGIN2 Water - 

DELFOS Tert-Butylmethyl Ether Water 

 
According to our research, the worst solvents are Water as per CIGIN2 as well as DELFOS model, and 

additionally Tert-Butylmethyl Ether as per DELFOS model.   
Next, we examined the best solvents for a set of solute types (e.g., anti-viral, anti-cancer, and anti-fungal) by 

model. The results are as follows: 
 
Table 5. Top performing solvents corresponding to solute types 
 

Model Top Performing Solvents 

Anti-cancer (n = 18) Anti-fungal (n = 5) 

CIGIN2 Isobutyl Ace-
tate 

Isopropyl Ace-
tate 

2-Butanol Anisole Isobutyl Ace-
tate 

Butyl Ace-
tate 

DELFOS Ethyl Formate Water Ethyl For-
mate 

1-Pentanol Isobutyl 
Acetate 

 
Table 5. (Continued) 
 

Model Top Performing Solvents 
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Anti-malarial (n = 8) Anti-psychotic (n = 5) 

CIGIN2 Isobutyl 
Acetate 

3-Methyl-1-
butanol 

1-Pentanol Isobutyl ace-
tate 

 
Anisole 

Propyl acetate 

DELFOS 1-Butanol 3-Methyl-1-
butanol 

1-Pentanol Ethyl Formate 1-Pentanol 

 
Table 5. (Continued) 
 

Model Top Performing Solvents 

Anti-viral (n = 9) Anti-retroviral (n = 9) 

CIGIN2 Isobutyl Ac-
etate 

3-Methyl-1-
butanol 

1-Pentanol Isobutyl ace-
tate 

3-Methyl-1-
butanol 

1-Pentanol 

DELFOS Water Ethyl Formate 3-Methyl-1-
butanol 

1-Butanol 1-Pentanol 

 
According to our research, across 6 solute types, the two models indicate some common best solvents for 

Anti-fungal (Isobutyl Acetate), Anti-Malarial (3-Methyl-1-butanol, 1-Pentanol), Anti-viral (3-Methyl-1-butanol), and 
Anti-retroviral (1-Pentanol), but no common top solvents for Anti-Cancer and Anti-psychotic solute types. It is also 
interesting to find that best solvents differ across solute types. Going by lower MAPE, MAE, RMSE, we will recom-
mend giving higher weightage to CIGIN2 model results. 

Finally, we looked at solutes with highest pIC50 values, which indicates the most promising solutes to treat 
Covid-19. pIC50 value is a biological activity property of a solute (i.e., an API) which indicates the amount of API 
required to achieving 50% inhibition of the disease. It is one of the most important biological properties in drug design. 
We present here the list of top 3 best solvents for the top 5 solutes selected on the basis of highest pIC50 value.  

The results of most biologically active solutes as measured by pIC50 value are presented in Table 6a for 
CIGIN2 and in Table 6b for DELFOS model. 
 
Table 6a. CIGIN2 model - Top solvents corresponding to top solutes (according to pIC50 values) 
 

Top pIC50 Solutes Top Performing Solvents 

Amuvatinib (pIC50=7.7) Isobutyl acetate Anisole Butyl acetate 

Carboxyamidotriazole 
(pIC50=7.05) 

Isobutyl acetate Isopropyl acetate 3-Methyl-1-butanol 

Ouabain (pIC50=7.01) 1-Pentanol Butyl acetate 3-Methyl-1-butanol 

Digoxin (pIC50=6.72) Butyl acetate Anisole Isobutyl acetate 
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AI-10-49 (pIC50=6.72) Anisole Isopropyl acetate Isobutyl acetate 

 
Table 6b. DELFOS model - Top solvents corresponding to top solutes (according to pIC50 values) 
 

Top pIC50 Solutes Top Performing Solvents 

Amuvatinib (pIC50=7.7) Isobutyl acetate 1-Pentanol Ethyl formate 

Carboxyamidotriazole 
(pIC50=7.05) 

1-Pentanol Ethyl formate Water 

Ouabain (pIC50=7.01) 1-Pentanol 1-Butanol 3-Methyl-1-butanol 

Digoxin (pIC50=6.72) 1-Butanol 3-Methyl-1-butanol 1-Pentanol 

AI-10-49 (pIC50=6.72) Ethyl formate 1-Pentanol 1-Butanol 

 
According to our research, across the top 5 solutes by pIC50 value, the two models indicate some common 

best solvents for Amuvatinib (Isobutyl acetate) and for Ouabain (1-Pentanol, 3-Methyl-1-butanol), but no common 
top solvents for Carboxyamidotriazole, Digoxin, and AI-10-49. Once again going by lower MAPE, MAE, RMSE, we 
will give higher weightage to CIGIN2 model results. 
 
Advantages of our research approach 
The in-silico approach as developed and discussed in this research has the advantage of speed. We are able to evaluate 
pairings of hundreds of solutes and dozens of solvents in a matter of hours, as opposed to weeks and months using 
traditional in-vitro methods. The two models we used were trained and tested in about a month, however post model-
training, it took only hours for predicting solvation energies for the 138 solutes and 28 solvents. Given the scalability 
of the in-silico approach, we can easily expand the list of solutes and solvents without much time or cost impact.  

Notwithstanding the initial cost of in-silico model development compared to in-vitro testing costs, once the 
AI models are trained and tested, future applications of the AI models cost much less time and money compared to 
traditional in-vitro (i.e., laboratory) approach.   
 
Disadvantages of our research approach 
There are two main limitations of the research work presented here. First, the models we used consider a pair of a 
solute and a solvent at a time. This works fine for evaluating long lists of solutes and solvents; however, it would be 
fruitful to incorporate more than one solvent, i.e., multiple excipients. In some cases, the interactions between multiple 
excipients can be important which need to be considered as well. 

Second limitation of our approach presented here is that the solvation energy is also a function of the molar 
concentrations of the solute and solvent, i.e., amount of substance per unit volume of solution. We do not consider 
molar concentration in our present research.  
 

Conclusions and Future Research Directions 
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This research is about discovering Covid-19 medicine from among known APIs with the most promising solubility. 
We focused on solvation energy as the key factor. We implemented two AI models, of which CIGIN2 model does 
somewhat better than DELFOS model in predicting solvation energy of solute-solvent pairs.  

We are able to derive several conclusions regarding (a) best solvents across a list of solutes, (b) worst solvents 
across solutes, (c) best solvents by type of solute (e.g., Anti-viral, Anti-malarial, etc.), (d) best solvents for most 
biologically active solutes as measured by pIC50 value.  

We also find that the two models yield significantly different results in terms of best solvents, although there 
are a few commonalities also. Overall given somewhat better performance of CIGIN2 model over DELFOS on test 
data, we recommend giving higher weightage to CIGIN2 model results.  

The recommendations regarding top solvents from our research are best considered as a promising list for in-
vitro study next. In other words, outputs from AI models in our research should be next experimentally tested in a 
laboratory (in-vitro work).  

There are at least two promising areas for future research. One, to incorporate more than one solvent in the 
mix with a solute, and second, to incorporate molar concentrations of all solvents and the solute.  

In conclusion, our research contributes to the use of AI models in drug discovery by quickly and efficiently 
discovering the most promising solvents for a set of solutes. We focused on Covid-19 APIs here as that problem is 
acute and in need of greater insight and help from the scientific community.  

Our code for the models is available at https://github.com/Sampreeth04/COVID19-Drug-Design. 
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