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ABSTRACT 

With the rapid increase in the power of computing and technological advances in robotics, research in the field of 
robotics has rapidly become very expansive. Being able to accurately predict movements of a robot is vital to many 
applications within this field, allowing for more precise simulation and prototyping as well as more accurate control 
of robotic systems. In this paper, we present an adaptable neural network that accurately predicts the movement of 
quadcopter robotic agents which can be expanded to encompass many more robots and applications given the requisite 
data, producing accurate results within a small margin for error. 

Introduction 

Robotics has increasingly become more and more relevant in recent years, with great advancements in robotics 
technology advancing the field in multiple areas, such as manufacturing. Corporations like Boston Dynamics, for 
example, have developed ever more complex walking robots ranging from four legged pack beasts [1] to articulated 
human-like walkers that can run and do parkour [2]. Flying drones have also become more advanced, with growing 
interest in commercial delivery and other applications driving innovation. As development of human-mimicking 
robots continues, robots will continue to become more complicated with many moving parts. 

In this field, there is one concept that is very important when designing a robot, robot dynamics. Concerned 
with the relationship of the robot and the forces placed upon it, it is a direct application of soft and rigid body dynamics 
(the motion of objects in relation to the physical factors that affect them, like force, momentum, etc.) [3] to robots. 
Getting a good understanding of how the application of external forces will affect a robot is important in intelligent 
and accurate robot design. However, it is hard to specifically predict different ways a robot will move/react given a 
set of input parameters without running an experiment, which researchers/engineers will be reluctant to perform if it 
may cause strain/damage to their valuable prototypes [4]. 

To help solve this issue, we present a neural network model to accurately predict the actions a robot’s body 
will take when various forces are applied, given a set of movement data. It can extrapolate the movements a robot will 
take within an acceptable degree of error of up to 1%. By providing our network with more conventional movement 
data, it can successfully predict how a robot will react when performing much more strenuous maneuvers, like a rapid 
turn on a quadcopter. This would permit for more accurate simulation and control of robots compared to conventional 
computer simulations, making it easier to prototype new robots and improving their capacity to make decisions. 

Methodology 

A. Summary

To solve this problem, we need to create a predictive algorithm using robot movement data. In order to be able to 
accurately train the neural network, we first need to process the data to clean it. The data was preprocessed and 
standardized, before being placed into a custom dataset in order to allow the neural network to more accurately read 
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it, due to the unusual shape of the data. The neural network itself is highly adaptable, and is structured to allow 
complete customization over layer counts, number of inputs, and the like. In this fashion the network itself can be 
changed to suit different scenarios. 
 
B. Data Structure 
 
We utilized four different sets of movement data provided by Nathan Lambert. The first is a dataset generated by the 
Ionocraft, a flying microrobot (Fig 1) [5]. The remaining three datasets are generated based on a simulated version of 
the ionocraft using identical parameters [6]. Each dataset is 2000 elements long, consisting of 40 seconds worth of 
movement data, with movements in all three axes in various flight paths. 
 

 
 

Figure 1. The Ionocraft, the robot that produced the data. 
 
The data is fed into the neural net as a set of 10 values, corresponding to different aspects of the quadcopter’s 
movement. The complete set of 10 corresponds to: yaw, pitch, roll, angular acceleration on X, Y, and Z axes, and the 
4 motor PWM (pulse-width modulation) values. As an output, the neural network returns a set of 6 values, 
corresponding to the first 6 values in the input. During development, we applied two different forms of outputs and 
targets for testing. The first is “true-state prediction”, or state-based prediction, where the data corresponds to the 
resulting position and orientation of the quadcopter after 0.02 seconds (Equation 1). So, in a scenario where a 
quadcopter moves 5 units from an original x value of 4, the output would be 9. The second is “delta-state prediction”, 
or delta-based prediction, which corresponds to the difference/distance the quadcopter moved during the 0.02 second 
time frame (Equation 2). In the aforementioned scenario, the output would instead be 5, since the quadcopter moved 
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5 units in total. These values can then be utilized to provide an accurate representation of where the quadcopter is at 
any given moment. 

Equation 1. The “True-state” prediction formula. 

Equation 2. The “Delta-state” prediction formula. 

Before being fed into the neural network, the data was preprocessed by first removing all rows containing non-physical 
outliers more than 4 standard deviations away from the mean by searching through each column. This is due to the 
fact that each column corresponds with a different aspect of motion, so outliers would be specific to specific columns 
as opposed to the entire dataset in general. By doing so, the rest of the data can be normalized without causing 
inaccuracies in the dataset as a whole. Then, utilizing Z-score normalization, we standardized the dataset (Equation 
3). 

Equation 3. The Z-score standardization formula. 
 
This allows us to ensure that the data is manageable by the neural network, improving the training environment. Data 
normalization also allows us to reduce instability in the dataset by reducing noise. We then split the data into test/train 
sets by randomly breaking the overall dataset into two non-overlapping datasets along an 80%/20% split. 
 
C. Network Structure 
 
To train on the data, we utilized a simple linear neural network of 10 layers, with 50 nodes per layer. A similar, but 
smaller, network diagram can be seen below (Fig 2). While a more complex neural network could potentially be 
utilized, we found that using more layers or hidden nodes did not greatly affect the accuracy in any way while also 
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taking more time. For the loss criterion, we utilized MSELoss, which measures the Mean Squared Error between the 
predicted value and target. 
 
D. Implementation Details 
 

Figure 2. The structure of a neural network similar to the one used for prediction. 
 
For training, we used a learning rate of 0.04 for our optimizer, training for 100 epochs, or iterations.  
Originally, we started with a higher learning rate. However, we found that a lower learning rate provided a higher 
overall accuracy. We also included a learning rate scheduler that would reduce LR whenever optimization plateaued, 
to improve model performance. 
 

Results / Analysis  
 
A. Overall Results 
 
Our results overall were extremely positive. Our results (Table 1) overall indicate a high prediction success rate 
utilizing state-based predictions, and positive results on the simulated datasets using delta-based prediction. 
 
Table 1. Results of various tests conducted upon the neural network 
(Percentage represents acceptable result deviation from target calculated by the equation 100*(target-predict)/target) 
 

 Deltas 5% Deltas 1% States 5% States 1% 

Ionocraft Dataset 45% 9% 100% 99% 

Simulated Dataset 1 100% 99% 93% 59% 

Simulated Dataset 2 100% 100% 94% 61% 
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Simulated Dataset 3 100% 100% 92% 51% 

 
B. Delta-based Prediction 
 
Utilizing Delta-based prediction resulted in high accuracy rates for all three simulated datasets, giving 99-100% 
accuracy rates up to a 1% difference between predicted and target values (Fig 3). However, delta-based prediction 
was extremely inaccurate for predicting on the dataset produced by the Ionocraft, reaching only 45% accuracy with a 
5% margin for error between the target and output, and 9% accuracy with a 1% margin for error. 
 

 
 
Figure 3. The % difference between results and targets using delta-based predictions. 
 
C. State-based Prediction 
 
State-based prediction proved to be more beneficial when applied to the real world dataset, producing around 99% 
accuracy with a 1% margin for error (Fig 4). It was less effective in predicting simulated robots, however, producing 
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results with an accuracy in the high 90%s within 5% of the target, but producing results of around 50-60% accuracy 
when the margin for error was shrunk. 
 

 
 
Figure 4. The % difference between results and targets using state-based predictions. 
 
D. Analysis 
 
As our results have shown, the two different ways of predicting dynamics work effectively on different sources of 
generated data, with predicting deltas working more effectively on simulated datasets and predicting states being more 
effective for real-world applications. We posit this is due to noise present in simulated vs real world datasets. Datasets 
from real robots will be more noisy than simulated datasets, meaning that predicting deltas will be more inaccurate 
because the immediate change in the result will be bigger. On the other hand, state-based predictions calculate an 
entire new position as opposed to simply the change, making the resulting error smaller. However, such a prediction 
method will still suffer from compounding errors, making the implementation of a Kalman Filter or more long-term 
trajectory predictions necessary to completely eliminate compounding errors [7]. Additionally, the use of a %-based 
result comparison becomes inaccurate with larger data values. Utilizing a more exact number through the use of a 
Mean Squared Error would allow for more precise comparisons of output and target values. 
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Conclusion 
 
In our study, we produced a neural network which can successfully predict robot dynamics within a small time frame. 
Our neural network produced extremely positive results, reaching up to 90-100% accuracy rates on all 4 datasets with 
two different methods of prediction. However, these results still leave room for improvement. Because this project is 
incredibly dependent on the data being accurate and reliable, the inclusion of additional varied training data would 
increase the accuracy immensely. Additionally, the deficiencies of single-step prediction models leave our algorithm 
susceptible to small errors in long-term predictions. Our work would benefit greatly from the implementation of 
additional data normalizing functions as well as methods to reduce errors over long time periods, allowing it to more 
accurately predict movement in almost any circumstance. 
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Appendix 
 
The following is a part of the neural network and training loop. Please contact the author for the full algorithm. 
 
import torch as torch 
import torch.nn as nn 
import torch.optim as optim 
from torch.autograd import Variable 
from torch.optim import lr_scheduler 
from torch.utils.data import DataLoader 
from torch.utils.data import Dataset 
from torch.utils.data import random_split 
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import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.lines as mlines 
from collections import OrderedDict 
import math 
 
class predNet(nn.Module): 
 def __init__(self, n_in, hidden_w, depth, n_out): 
     super(predNet, self).__init__() 
     self.n_in = n_in 
     self.hidden_w = hidden_w 
     self.depth = depth 
     self.activation = nn.Softmax() 
     self.n_out = n_out 
     layers = [] 
     layers.append(('dynm_input_lin', nn.Linear(self.n_in, self.hidden_w))) 
     layers.append(('dynm_input_act', self.activation)) 
     for d in range(self.depth): 
         layers.append(('dynm_lin_' + str(d), nn.Linear(self.hidden_w, self.hidden_w))) 
         layers.append(('dynm_act_' + str(d), self.activation)) 
     layers.append(('dynm_out_lin', nn.Linear(self.hidden_w, self.n_out))) 
     self.features = nn.Sequential(OrderedDict([*layers])) 
 
 def forward(self, x): 
     x = self.features(x) 
     return x 
 
model = predNet(10, 50, 2, 6) 
# print(model) 
criterion = nn.MSELoss() 
optimizer = optim.Adam(model.parameters(), lr=lr) 
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.5, patience=2) 
test_errors = [] 
train_errors = [] 
 
# load data 
trainLoader = DataLoader(train_set, batch_size=bs, shuffle=True, collate_fn=my_collate) 
testLoader = DataLoader(test_set, batch_size=bs, shuffle=True, collate_fn=my_collate) 
 
for epoch in range(epochs): 
 # testing and training loss 
 train_error = 0 
 test_error = 0 
 for i, data in enumerate(trainLoader): 
     inputs, targets = data 
     inputs = Variable(inputs, requires_grad=True) 
     targets = Variable(targets, requires_grad=True) 
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     optimizer.zero_grad() 
     predict = model(inputs) 
     loss = criterion(predict, targets) 
     train_error += loss.item() / len(trainLoader) 
     loss.backward() 
     optimizer.step() 
 for i, data in enumerate(testLoader): 
     inputs, targets = data 
     outputs = model(inputs) 
     loss = criterion(outputs.float(), targets.float()) 
     test_error += loss.item() / (len(testLoader)) 
 # step lr scheduler 
 scheduler.step(test_error) 
 print(f"Epoch {epoch + 1}, Train loss: {train_error}, Test loss: {test_error}") 
 train_errors.append(train_error) 
 test_errors.append(test_error) 
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