HIGH SCHOOL EDITION Volume 10 Issue 3 (2021)

@ Journal of Student Research

Cryptography: A Quantitative Analysis of the
Effectiveness of Various Password Storage
Techniques

Rohan Patra' and Sandip Patra*

'Dougherty Valley High School, San Ramon, CA, USA
#Advisor

ABSTRACT

Recently, there has been a rise in impactful data breaches releasing billions of people’s online accounts and financial
data into the public domain. The result is an increased importance of effective cybersecurity measures, especially
regarding the storage of user passwords. Strong password storage security means that an actor cannot use the
passwords in vectors such as credential-stuffing attacks despite having access to breached data. It will also limit user
exposure to threats such as unauthorized account charges or account takeovers. This research evaluates the
effectiveness of different password storage techniques. The storage techniques to be tested are: BCRYPT Hashing,
SHA-256 Hashing, SHA-256 with Salt, and SHA-256 with MD5 Chaining. Following the National Institute of
Standards and Technology (NIST) guidelines on password strength, both a weak and robust password will be passed
through the stated techniques. Reversal of each of the results will be attempted using Rainbow Tables and dictionary
attacks. The study results show that pairing a strong password that has not been exposed in a data breach with the
BCRYPT hashing algorithm results in the most robust password security. However, SHA-256 hashing with a salt
results in a very similar level of security while maintaining better performance. While plain SHA-256 hashing or
chaining multiple hashing algorithms together is theoretically as secure, in practice, they are easily susceptible to
simple attacks and thus should not be used in a production environment. Requiring strong password which have not
been exposed in previous data breaches was also found to greatly increase security.

Introduction

Authentication is one of the most important areas in computer security. Many forms of authentication exist including
single sign-on, authentication by IP address, and hardware keys. However, due to its simplicity and universal nature,
passwords remain the most common and popular form of authentication (Bonneau et al., 2012). As passwords are so
widely used, focus in the security space has shifted to finding better ways to implement the use of passwords as
opposed to new authentication mechanisms.

Unfortunately, the fact that passwords are so widely used is also a drawback since if a password is used in multiple
places and it is leaked from one source, no security measure can prevent an attacker from using that password to log
in to other places where it has been reused. According to Drexel University professor Susan Wiedenbeck, a good
password is both “easy to remember and hard to guess” (Wiedenbeck et al., 2005). Therefore, simply adding a few
numbers and symbols to a common word such as a pet’s name is inadvisable as an attacker can easily predict it. A
password which is both memorable and secure could be two random and unrelated words such as cake and bell paired
with a series of special characters and numbers.

Risks in Insufficient Password Security

ISSN: 2167-1907 www.JSR.org 1

HIGH SCHOOL EDITION

@ Journal of Student Rescarch

Volume 10 Issue 3 (2021)

In the event of an attack, insufficient password security can lead to user exposure despite strong password storage
techniques. According to the guidelines set forth by the NIST, it is the responsibility of the application accepting
passwords to make sure that users’ passwords are strong and do not contain the following criteria: the password
appears in a previous data breach, the password is a common dictionary word, the password contains repetitive or
sequential characters, or the password contains contextual words such as names (Grassi et al., 2017). If the password
can be easily guessed, or appears in public data, it is a simple task for attackers to attempt to authenticate using every
password in a list until an attempt is successful, which negates the pros of good password storage security.

Drawbacks to Encrypting Passwords

“Encryption is a way of scrambling data so that only authorized parties can understand the information. In technical
terms, it is the process of converting human-readable plaintext to incomprehensible text, also known as ciphertext. In
simpler terms, encryption takes readable data and alters it so that it appears random. Encryption requires the use of a
cryptographic key: a set of mathematical values that both the sender and the recipient of an encrypted message agree
on. Although encrypted data appears random, encryption proceeds in a logical, predictable way, allowing a party that
receives the encrypted data and possesses the right key to decrypt the data, turning it back into plaintext,” (Cloudflare,
Inc., n.d.). Although technically secure, encryption algorithms are reversible, meaning that an attacker can find out
the original text, the password in this case, without knowing the password beforehand. The only information required
to reverse encryption is a decryption key or a string of characters which can be fed to an algorithm to determine the
original text. When using encryption to store passwords, the decryption key must be stored somewhere on the server,
and if an attacker gains access to the server and the decryption key, they can bypass the passwords’ security.

Password Hashing

A hashing algorithm is a function which accepts any data and maps it to a string of a fixed size (Arias & Auth0, 2019).
The output of a hashing algorithm is referred to as a hash or a digest.

What Makes a Good Hashing Algorithm?

A good hashing algorithm must match the following guidelines: it is easy and practical to compute the hash, but
difficult or impossible to regenerate the original input if only the hash value is known; and it is difficult to create an
initial input that would match a specific desired output (“Guide to Cryptography - OWASP,” 2018). A good hashing
algorithm only goes one way, meaning that once some data has been hashed, there should not be a way to reverse it.
Obviously, this is a very desirable feature for password storage as a legitimate user will know both the original
password and the application will know the hash, and the data can easily be compared to authenticate the user.
However, if an attacker were to gain access to the application and the stored hashes, they would have no way of
retrieving the original passwords.

Password Reversal Techniques

Rainbow Tables

Rainbow tables are one form of attack commonly used when attempting to reverse hashed passwords. Essentially, the
attacker computes and stores the hashes to many commonly used or known passwords using various hashing
algorithms. Then, the attacker simply checks if the digest in question matches any of the precomputed hashes. If a
match is found, then the password is successfully found. That is why it is important to have strong password security
in addition to secure password storage.

ISSN: 2167-1907 www.JSR.org 2

HIGH SCHOOL EDITION

@ Journal of Student Rescarch

Volume 10 Issue 3 (2021)

Dictionary Attacks

Another common method of reversing hashes is a dictionary attack. Like a Rainbow Table attack, the attacker must
have a list of known or common passwords beforehand. However, in this attack, the hashes are not computed
beforehand. Each password in the list is hashed using the same hashing technique used to produce the digest in
question and compared to it. Since this technique requires computations of hashes one at a time during the attack, it is
much slower than rainbow tables. However, since it does not rely on a known list of hashing techniques, it is more
effective against uncommon hashing techniques.

Collision Attacks

The hallmark of a good hashing algorithm is its ability to not produce the same digest for two different pieces of data.
However, since the digest must be of a fixed length but can represent data of any length, there must be multiple pieces
of data which evaluate to the same digest. The longer the length of the digest, the more permutations available to
represent data, which makes it more difficult for one to find such an occurrence. A collision attack, mainly only
effective against weaker algorithms with shorter digests, is when an attacker does not know the original password but
knows another password which results in the same hash, so the attacker can use that known password to bypass
authentication.

Common Hashing Algorithms

MDS5: MDS is a hashing algorithm which generates 32-character long digests. Due to its short digest length and the
fact that collisions have been found for hashes produced by this algorithm (Selinger, 2006), MDS5 is a very insecure
hashing algorithm.

SHA-256: “The SHA-256 algorithm is one flavor of SHA-2 (Secure Hash Algorithm 2), which was created
by the National Security Agency in 2001 as a successor to SHA-1. SHA-256 is a patented cryptographic hash function
that outputs a value that is [64 characters] long,” (N-able, 2021). Since it has such a long character length and is
cryptographically sound, no collisions have been found for SHA-256 and it is regarded as a secure hashing algorithm.

BCRYPT: BCRYPT is an algorithm which is of a subset of hashing algorithms known as key-stretching
algorithms. Key-stretching algorithms serve the same purpose of hashing algorithms; however, they are much slower
and harder to compute. This results in greater security since “even with a fast GPU or custom hardware, dictionary
and brute-force attacks are too slow to be worthwhile,” (CrackStation, 2019).

Password Salting

Password salting is a technique used to decrease the effectiveness of Rainbow Table attacks. A randomly generated,
long string of characters, or salt, is prepended or appended to the data before hashing and store alongside the data.
Each password uses its own unique salt. Thus, rainbow table attacks are rendered ineffective as precomputed hashes

cannot account for modifications to the known passwords. However, salted passwords are still vulnerable to dictionary
attacks.

Research Question

What is the most secure way to store passwords; and which method provides the best balance between security and
performance for viability in a production environment?

Methodology

Overview

ISSN: 2167-1907 www.JSR.org 3

HIGH SCHOOL EDITION

@ Journal of Student Rescarch

Volume 10 Issue 3 (2021)

The storage techniques to be tested are: BCRYPT Hashing, SHA-256 Hashing, SHA-256 with Salt, and SHA-256
with MD5 Chaining. Although not proven to be secure, a commonly used superset of password hashing is hash
chaining. In the case of this experiment, we are assuming that the application stores the SHA-256 hash of the MD5
hash of the original password. Following the National Institute of Standards and Technology (NIST) guidelines on
password strength, both a weak and robust password will be passed through the stated techniques, and the execution
time for each technique will be recorded. Then, reversal of each of the resulting strings will be attempted using rainbow
tables and dictionary attacks (hashcat). The data recorded will be the time taken to reverse the hash or whether the
attack was successful. A performance index will be created for each algorithm to properly compare the varying storage
techniques, considering both execution time and reversal time. The performance index will be the average time taken
to completely execute each technique rounded to two places of decimal.

Passwords to Test

The insecure password to be tested will be Jeff123. It breaks all the NIST’s guidelines on strong passwords as it is a
common name and appears in several known data breaches. See Figure 1. The strong password to be tested will be
JeffPurpleCats76! which follows all the NIST’s guidelines on password security. It adds on to the weak password by
appending unrelated but memorable words as well as number and special characters. This results in a strong but
memorable password. The password also has not been seen in any public data breaches as seen in Figure 2.

Protected by reCAPTCHA and the Google

THIS PASSWORD WAS SEEN

Figure 1. Checking whether the password Jeff123 has been exposed in a data breach via BreachDirectory (Patra, n.d.).

Protected by reCAPTCHA and the Google

THIS PASSWORD WAS SEEN TIMES

ISSN: 2167-1907 www.JSR.org 4

HIGH SCHOOL EDITION

@ Journal of Student Rescarch

Volume 10 Issue 3 (2021)

Figure 2. Checking whether the password JeffPurpleCats76! has been exposed in a data breach via BreachDirectory
(Patra, n.d.).

Testing Storage Technique Computational Efficiency

Each storage technique will be implemented and tested using the programming language Python (Python Software
Foundation, 2021). See Figure 3, Figure 4, Figure 5, and Figure 6 for the code used to test BCRYPT hashing, SHA-
256 hashing, Salted SHA-256 hashing, and SHA-256 with MD5 hash chaining respectively. Each technique will be
tested 200 times to get a more accurate average representation of computational efficiency.

import bcrypt
import time
def hash_it{):
salt = borypt.gensalt()
print(bcrypt.hashpu(b'leffl23', salt) + salt)
start time = time.time()
for i in range(200):
hash_it()
end_time = time.time()
print("Total time taken was %f milliseconds." % ({end time - start_time) * 1000.0))

Figure 3. Python code to find the BCRYPT hash of a given password 200 times and give the time taken in milliseconds.
The code prints the result of hashing and the salt from each round separated by dollar sign.

from hashlib import sha256
import time
def hash_it():
print(sha256(b'Jeff123") . hexdigest())
start time = time.time()
for 1 in range(200):
hash it()
end_time = time.time()
print("Total time taken was %¥f milliseconds." % ({end time - start_time) * 1009.9))

Figure 4. Python code to find the SHA-256 hash of a given password 200 times and give the time taken in milliseconds.
The code prints the result of hashing from each round.

import secrets
import time
from hashlib import sha256
def hash_it{):
salt = secrets.token_hex(8)
print(sha256(b'Jeffl123 "+bytes (salt, 'utf-8')).hexdigest{}+":"+salt)
start time = time.time()
for i in range(200):
hash_it()
end_time = time.time()
print("Total time taken was %f milliseconds." ¥ ({end time - start_time) * 1000.0))

Figure 5. Python code to find the salted SHA-256 hash, using a randomly generated 16-character salt of a given
password 200 times and give the time taken in milliseconds. The code prints the result of hashing and the salt from
each round separated by a colon.

ISSN: 2167-1907 www.JSR.org 5

HIGH SCHOOL EDITION

@ Journal of Student Rescarch

Volume 10 Issue 3 (2021)

import time
from hashlib import sha256, mdS
def hash_it():
print(sha256(md5(b'Jeff123"').digest{)) . .hexdigest(}))
start time = time.time()
for i in range(200):
hash_it()
end_time = time.tima()
print("Total time taken was %f milliseconds." % ((end time - start_time) ¥ 1000.9))

Figure 6. Python code to find the SHA-256 hash of the MD5 hash of a given password 200 times and give the time
taken in milliseconds. The code prints the result of hashing from each round.

Testing Rainbow Table Attack

The Rainbow Table attacks will be simulated using the BlueCode Hash Finder software (BlueCode Team, n.d.). See
Figure 7 for a screenshot of the software. The software includes a pre-built database of various types of hashes for a
comprehensive list of known or dictionary-based passwords. The software will be loaded with a list of the hash to be
reversed repeated 200 times and it will be run using the default settings. The total time for execution will be divided
by 200 to find the average time taken to reverse the hash.

* BlueCode Hash Finder 9.3 | 195 days left _ X
Drag files here Progress
i r Total Processed
6.484.349 302.940
Software Management
Good Bad
Start Stop -
64.835 47.765
i RESRS Notsupported @ Mo hash [2]
Minimize to tray Work dir... 2 st i,
Threads 100 ~ Timeout 20 ~ MD5 SHAL MYSQLS
File format ITEM:HASH o b63.864 31.547 4,533
d ast start o MYSQL3 SHA256 SHAS512
|save remaining @ Split into folders @ 7.959 4.613 84
(7] 4%
Processing...
Hashes in the DB: 13 345 902 648 Last updated DB: 21-08-2020 File 1 of 1 ~ 86 min

Figure 7. Screenshot of the BlueCode Hash Finder software (BlueCode Hash Finder, 2020), for testing Rainbow Table

Attacks.

Testing Dictionary Attack

ISSN: 2167-1907

www.JSR.org

HIGH SCHOOL EDITION

@ Journal of Student Rescarch

Volume 10 Issue 3 (2021)

The dictionary attack will be tested using a Python script. Although there are various utilities which support greater
speeds as a result of utilizing the computer’s Graphics Processing Unit and multi-threading, those utilities cannot be
used in this experiment as no single utility supports all the password storage techniques to be tested, and thus, results
may become skewed. The list of known passwords to be used in the simulated dictionary attacks is the list known as
“weakpass_2a” (Weakpass_2a, 2017). It is a public compilation of known passwords from various public sources.

import time
start_time = time.time()
for line in open("weakpass Z2a.txt", "r"):

if hash_it(line.strip()) == query hash:
print("Hash Found:", line)
break

end_time = time.time()
print("Total time taken was %f milliseconds." ¥ ({end time - start_time) * 1000.0))

Figure 8. Python code to attempt to reverse the hash “query_hash” using the wordlist contained in “weakpass_2a.txt”.
Code assumes that function “hash_it()” provides the digest of the algorithm used to produce “query_hash” when run
on each line in the wordlist.

The dictionary attack will be tested on each hashing technique and password 5 times and the average will be taken.

Hardware Specifications

To make sure that the results of this experiment can be reproduced, the hardware specifications of the device on which
the test scripts will be run are shown in Figure 9.

Device Information

Device name DESKTOP-350AEIG

Processor Intel(R) Core(TM) 17-9708K CPU @ 3.68GHz
Installed RAM 16.2 GB

System type 64-bit operating system, x64-based processor

Windows 05 Information

Edition Windows 1@ Pro

Yersion 28H2

Installed on 2282021

05 build 19842 .985

Experience Windows Feature Experience Pack 12&.2212.2828.6

Figure 9. Screenshot of hardware specifications of device on which test scripts will be run.
Results
After conducting a series of tests, the following results were obtained.

Storage Technique Computational Efficiency

Weak Password

ISSN: 2167-1907 www.JSR.org 7

A SCROORFUITION Volume 10 Issue 3 (2021)

@ Journal of Student Rescarch

b'$2bt 123 mXUgEpoFYgd0LhlS9P7kZ . aUZiNL fWYPhZVKFAIKRTY/ 7727 dPbCE2b3 123 mXUqEpoFYgdOLhlS9P7kZ. "
b'$2bt12%3dfXuemz IMneYHG7 /UnxHm. mOz vifK LBMNxHhn .HdOp . bXx/ 1z thcbAq$2b3 123 df Xuemz IMne¥HG7 / UnxHm. *
b '42b$12%y0LYHO5 JuFbROVXS . M5CAes RHEP TS 72LC06] xh¥qP FFiBLuwB2P v2GE2b% 124 0L YHOS JuFbRQvXS . M5CAa "
b'$2bt123 TawGvlARENWFxML . g¥QemOuvpz /I CUDL16Azb/JECEUrFRX X iy . .$2b3123 TawGylAAEMNWFxML . g cmO "
b'$2bt123d IKmIKWGELdg¥fDfMpkmtetdgneenihgu)2qq/ xxdX1b1LGi1g45 .$2b3 123 dIKmIWGEudkgy fDfMpkmtea*
b'$2bt 125 FTtuh6u 2 7nHORURYE/K . eK5P IbMAxqe@k pHMb t 2551 ryz0Bcd J¥y$2b3 123 FTtuh6u 2 7nHORURYE/K "
b'$2bt123R7BCZeIVk 2g30DF TFYBhEeMblh /41iy5oZWR2x . sk¥RzduBgEjq7CE2b3 123 RZBCIaIVk2g30DF TFYBhEa"
b'$2bt123912aMNAATUTWNLISLe/ tzaD UICog/LLqRNTQd3ThE82xPzYfz 7 fM1W} 2b3123912aNAATUIWNI G e/ tzaD . "
b'$2bt 123 CETRMvonbX X1 oXBtzh8Q0ICPhSEUr24UZ /femgoez(FzYyBug@dom$ 2b3 123 CETRNvonbXX 11l oXBtzh2Q0 "
b'$2bt1231tngPknlyIqQcuePadR 34hJkMLCOWACInBFdAC0Tk1GPKz157y$2b312%31tngPknlyIqicua7PadR . "
Total time taken was 42114.629838 milliceconds.

Figure 10. Output of the python script in Figure 3 when run against the password Jeff123.

'07e08ddcecafcf36c8B822bT7A4dbatbh81795a5fh5c5874d8088eb 4262095680 "
'G7008ddcecafcf36c8B822bT74dbath81795a5fh5c5874d8088ebcd426a0956080 "
'87008ddcecafcf36c8B822bT74dbath81795a5fb5c5874d8088ebcd 2620956088 "
'07008ddcecadfcf36cEm22bT74dba9h81795a5Fb5c5874d8080ebcd 263095080 "
'B7088ddceca9fcf36cEm22bT74dbawh81795a5Tb5c5874d80EBebc42630950ER
'BFEERddceca Bt c 36802 2b T 7adba9b 8179545 Th5 58 7AdEEEEabcd 26309560 "
'BFEEEdAcecaSfcf36cB8022bTFAdbaob 8179545 Th5c5EFAdEEERab 4265095650 "
'07008ddcecafcf36c8B822bT74dbabh81795a5fb5c5874d8088eb 426309568 "
'G7008ddcecafcf36c8B822bT74dbath81795a5Th5c5874d8088ebcd426a0%56080 "
'67008ddcecafcf36c8m822bT74dba9h81795a5Fb5c5874d8080ebcd2ha095080 "
Total time taken was 11.€00156 milliseconds.

Figure 11. Output of the python script in Figure 4 when run against the password Jeff123.

'e2a82Pefe3b8d58eAT30bcaf2a798a5cTdf9dE1756629dd58e8865bodf41df1c: 37d884cdcdc3Taas”
'7dBabf185cc95ehd9d3dacm59bb3ba9301aed 2 T49928F9bfE8d9alBel7af 2193 :4ac 16998 cable’
'2a5b894695ch17152c3d0cidaactlb3dd7393ac3cd7692b5Tefd1e2877d4ad61:506deB431F7c2199"
'71beb58cb28141452969h97938beeetcd339ddale374 21732081 Fe7ed9c89d57:d829b3526113a591 "
'c9fS5fcabdfa7efbbe52b879d7ccd94b3fdhdd3abad39caadldc3cati29fdabid: 32442978 c6d696bb
'8b5bfc2947d83Tabdbaac7cc5133d013562a4c2214942c7921bB84056-83e637:5cd4R51ceec734870"
'7d5823a3b33a4683915a86024210e7e374012208ad9848c7b53052a3424ededf71: 96dadfedalbabddb '
'7843ebbfAf6c37ecc7574dBea5ce59315b876T 56T 1aeBedd8375965b2b27326: 74d7efBbltbebcal’
'8376ba2Be56cEb2c5359815ddd2f84d9a2256T21bbe7B6a3c38af587db5ede99: eeBA99c 7504493 Fd "
'2315313a168b2681ff7877b1499716d2294abT420ad185F7c7d72d75chfeeds8:25321f7d3eec’bca’
Total time taken was 14.998913 milliseconds.

Figure 12. Output of the python script in Figure 5 when run against the password Jeff123.

'39bbcd5cl1feehSAdA5479015561a8cblBel3ch3430c9024def3d27b88839dc !
'39bbcd5c11feerSadas479015561a8cblPel3cB3430c9624def3d27b88839dc !
'39bbcd5cllfeahsadabd7o9E15561a8chlBel3cB3A38-9624det3d27bEREIOdC T’
'39bbcd5cllfearsadasd79E15561a8chlBel3cB3A389624det3d27bEERE3OdC T’
'39bbcd5cllfeettadas479815561a8cbliel3co3430c96240def3d27b8BE39d "
'3%bbcd5cllfeehSada5479815561a8chblBel3cO3430c9624def3d27b88839dc !
'3%9bbcd5cllfeehSada5479815561a8cblBel3cB3430c9624def3d27b88839dc !
'3%9bbcd5c11feehSAdA5479015561a8cblel3ch3430c9624def3d27b88839dc !
'39bbcd3cl1fecrSadaS479015561a8chblBel3ch3430c9024def3d27b88839dc "
'39bbcd5cllfearsadasd79E15561a8chlBel3cB3A389624det3d27bEERE3OdC T’
Total time taken was 18.360376 milliseconds.

Figure 13. Output of the python script in Figure 6 when run against the password Jeff123.

ISSN: 2167-1907 www.JSR.org

HIGH SCHOOL EDITION

@ Journal of Student Rescarch

Volume 10 Issue 3 (2021)

Table 1. Table detailing the computational efficiency and outcomes of storing the weak password Jeff123 using five
different techniques. The data includes the total time to store it 200 times using each technique, the average time to
store the password once using each technique, and each technique’s performance index. The lower the performance
index, the more efficient the technique is.

Technique Total Time (ms) Avg. Time (ms) Index
BCRYPT 42114.63 210.57315 210.57
SHA-256 11.00 0.055 0.06
SALTED 14.10 0.0705 0.07
CHAINING 18.63 0.0918 0.09

As an additional note, in both BCRYPT hashing and Salted SHA-256 hashing, each resulting digest is
different even though the original data is the same. This results in additional security in cases where the different users
are using the same password as if one password is exposed, the other one is still secure.

Strong Password

b'$2b$12$mXa0UnZ . oy2lOaGs o . MjReFkM/Nrakb ZuRFs 7 xxTxMpOG7 tdzaz824 2b 312 mXa0lUw? . oy9l0aGo o MjRe
b'$2b$12% 5 XexulNaTsbd9rd5PmoMLRUKAY3Zc206W51ToqnZzOMhS L Lwedqifat2bi12¢5XexwNeTSbd9rdSPmoMLRy
b'$2bE1230mT fOhnICdOIxLO9xrdauDugkddkemFvl /tXbDjpy¥mhYFpk(QBS2t2g4$2bt1250mT/OhnICdOIxL9xrdaublu "
b'$2bE 123 3K 7FkNTLIwF280x2R3jbul oBnR r3XwSsXhvEn . h¥9otkqd3Lesxat2bt 125 3WK 7fkNT1 1w F280x2R3 jbu '
b'$2b$12%vderISrs 7Pglmjs@reL6Pedi . YeESctamSCLldyZc610AdhBmMRRZCE2bE12Evd9r IS rs 7Pglm] SEraLGPa "
b'$2b$12%xCkjlDgIlpEomGjRAQIXL eGOETNLFyB VBl yWDHFyf CwHUf TzbpaCad2b$128xCkj1lDqIlp&omGjRAgIXie"
b'$2b312¢PodcpVEbbh/25GA . heMsRUALGBZGLO . THE)3BEU/ xPmXBE3hIPTmK32b4124P 0l cpVEbbh/25GA . hsMsRu *
b'$2b$12%8csujdBAOXEs09sdSJQMP . oBFChS ZIOXH. LMcCzEAZEUAAXS Ez Byt 2b$12¢8csujdBAOxEs09sd5jONP . "
b'$2bf12%alzXfeXhtU).j0rAAqigT . dwsBwhRMynfXqy2aza6PDMMYIfaohmat2bt 125 alzXfcXhtU) .. J@rAkqiqT. "
b'$2bE 123 FSwWiflKcCyMWRIKEEmy . eHh3gdq/ ymxDwGAll cCOXCY97pz LELdCE2bE 125 FSwWifLK cCyMHRIK t8mw . e "
Total time taken was 42286.835538 milliseconds.

Figure 15. Output of the python script in Figure 3 when run against the password JeffPurpleCats76!.

'3cfe7a%cdbal7ba58adBb26T46f2ef2dE8d2dd6dEa398ddb7c3a7blcab21971456 "
'3cfe7a9cdbal7bas8adeb2AT46f2ef2dE8d2ddedAE398ddb7c3a7blcab21971456 "
'3cfe7a%9cdbal7bas8adeblatdef2ef2dEd2ddada39eddb7c3a7blcab2197145a"
'Fcfefa9cdbal7besEadBblafdat 2ef2ded2ddeda3oaddb7c3a7blcab21971456 "
'‘3cfea%cdbal7bas8adebl2af46f2ef2dEd2ddeda39addb7c3a7blcab21971456 "
'Icfe7a%cdbal7ba58adeh26T46f2ef2dBd2ddada398ddb7c3a7blcab21971456 "
'3cfe7a%9cdbal7bas8adeb26T46f2ef2dE8d2ddada398ddb7c3a7blcab2197145a"
'3cfe7a%9cdbal7basEadeblafaef2ef2dEd2ddeda39eddb7c3a7blcab2197145a "
'Fcfefa9cdbal7besEadiblatdat 2ef2ded2ddede3oaddb7c3a7blcab21971456"
'3cfea%cdbal7babBadeb2afi6f2ef2dEd2ddeda39addb7c3a7blcab21971456 "
Total time taken was 8.00705@ milliseconds.

Figure 16. Output of the python script in Figure 4 when run against the password JeffPurpleCats76!.

ISSN: 2167-1907 www.JSR.org 9

HIGH SCHOOL EDITION

@ Journal of Student Rescarch

Volume 10 Issue 3 (2021)

'ce5514chbc5e67392843d33641bee2bd379d59252726a631b171b8T 642566455
'e7d3bf 7892721687 7beccBbB6cTB2882a48158227854dbda%cae28bceati21d75d2:
'4c22812635a8483baf7218138e4bac5ad677b96af836526c95Fea3659%9a%9375
'alha33a78l468hedd2and5Telefddbd944e3459b4E3ad883babBabhe8d95athel:
'aad7@763ff38258687batetd 267 ebb 9104621160908 cd96ab28a7b9@596515b
‘bab7a6553152428c20b6b7826df 71928540 1ca9d fc339T3Eb53643bTEEFC9E98
'1426Fe71al30683b8bA89d2a72e2d0bE0e290b6ad2d532112742a9:53228676
'B922adB8ab8c9lbcelBc99cdB3ef 947 Ta3bliadenl 96T E64c292853Fd3edb
'ladead@846ced5d971318271T1bd1beET7424258d8db1la1164EdERdE520adad B
'6c71de912ad7e3d12dB2cc a5 B8562d02E82860TAC7hE1O753cfacB7c6b378d

1dleGbl711485bbds!

acedBdfBeB8ATEE7"

:4877cap9i76bdf1c”

138525d992514398 *
4a51319564bGbGch

19113 cacfbfogatoe’
:5b7927066d7eBd4606 "
:be55688%2e20cdam2 !
1281199491db239d4 "
1 7BdeTEaF1TdEs361 "

Total time taken was 15.014172 milliseconds.

Figure 17. Output of the python script in Figure 5 when run against the password JeffPurpleCats76!.

'eBcdEeddBBaesc9Bc 73111224 800R dAboE13c77Ee12b5613541c3b5bEdbeBEL "
'eBode9dlf0as6c 900731121224 8968d4bS9e 137701 2b5613541c3b5bBdbaBRA "
'eBrd@9ddffasbc98c7311e12248968dAbSE13c77Ee12b5613541c3b5bBAbaB B "
'eBrde9ddffasbc98c7311e]12248968d4bS013c770e12b5613541c3b5bBdbaB RS "
'eBcd@9ddPBacbcYB8c7311el2ed2908d4bonl3c770e12b5613541c3b5bwdbegga !
'eRcdE9ddBEaesc9Bc 7311l 224 B06R dAboE13c77Ee12b5613541c3b5bEdbeBEA "
'aBode9dlf0asbc90c7311e]12248968d4bS0 137701 2b5613541c3b5bBdbaBRA "
'eBrd@9ddffasbc98c7311e12248968d4bS9E 1377821 2b5613541c3b5bBAbaBEA "
'eBrd@9ddffasbc98c7311e12248968dAbSE13c77E212b5613541c3b5bBAbaBEA "
'eBrde9ddffasbc98c7311e]12ed8968dAbo9013c 7701 2b5A13541c3b5bBdbaB B "
Total time taken was 10.015488 milliceconds.

Figure 18. Output of the python script in Figure 6 when run against the password JeffPurpleCats76!.

Table 2. Table detailing outcomes of storing the weak password JeffPurpleCats76! using five different techniques.
The data includes the total time to store it 200 times using each technique, the average time to store the password once
using each technique, and each technique’s performance index. The lower the performance index, the more efficient
the technique is.

Technique Total Time (ms) Avg. Time (ms) Index
BCRYPT 42286.04 211.4302 211.43
SHA-256 8.01 0.04005 0.04
SALTED 15.01 0.07505 0.08
CHAINING 10.02 0.0501 0.05

Hash Reversal Techniques

Table 3. Table detailing the specific hash digests to be reversed in this section.

Technique | Original Hash

BCRYPT Jeff123 $2b$12$fBoKgNe. MMDA4WztLtttAO0Zyel AdJVTY wr3qtW fyS/kNOr9teEzO$2b$12$fBoK gNe MMDA4W Lttt AO
SHA-256 Jeff123 07008d4ceca9fcf36¢8022bf74dba9b81795a5b5c5874d8080ebc426a095680

SALTED Jeff123 fc32ee5228350a5e484e40884475856cec | 1e2cc72a6830f9965d8c58c997bb5:236aad22d550ad96

CHAINING | Jeff123 39bbedScl 1fee656d65479015561a8cb10e13c03430c9624def3d27b88839dct

BCRYPT JeffPurpleCatS7 6! | $2b$128CzPe/YXh7720FQ5SBAFBrMOeiPnkU68eMUeSCUg78 Aurudjm2Z9zaa$2b$12$CzPe/Y Xh7720FQSBAFBIMO
SHA-256 JeffPurpleCatS7 6! | 3cfe7a9c4bal 7b658a40b26f46f2ef2d8d2dd6d6390ddb7c3a7blcab21971450

ISSN: 2167-1907 www.JSR.org 10

HIGH SCHOOL EDITION

@ Journal of Student Rescarch

Volume 10 Issue 3 (2021)

SALTED
CHAINING JeffPurpleCats76! €8cd09d400ae6¢90c7311e12e48908d4b9013¢770e12b5613541¢3b5b04be884

JeffPurpleCats76 ! 73¢3983d24b01d898c896765df64a752ca7ea86cbed449a9000a060a0490f9d00:7¢188d7bb93991a7

Table 4. Table detailing outcomes of attempting to reverse the stored weak password Jeff123 using Rainbow Tables.
The data includes the total time to reverse it 200 times from each technique, the average time to reverse each technique

once, and whether the reversal was successful.

Technique Total Time (ms) Avg. Time (ms) Successful
BCRYPT N/A N/A FALSE
SHA-256 0.17 0.00085 TRUE
SALTED N/A N/A FALSE
CHAINING 0.12 0.0006 TRUE

Table 5. Table detailing outcomes of attempting to reverse the stored strong password JeffPurpleCats76! using
Rainbow Tables. The data includes the total time to reverse it 200 times from each technique, the average time to

reverse each technique once, and whether the reversal was successful.

Technique Total Time (ms) Avg. Time (ms) Successful
BCRYPT N/A N/A FALSE
SHA-256 0.15 0.00075 TRUE
SALTED N/A N/A FALSE
CHAINING 0.14 0.0007 TRUE

Table 6. Table detailing outcomes of attempting to reverse the stored weak password Jeff123 using dictionary attacks.
The data includes the total time to reverse it 5 times from each technique, the average time to reverse each technique

once, and whether the reversal was successful.

Technique Total Time (hours) Avg. Time (hours) Successful
BCRYPT 65.52 13.104 TRUE
SHA-256 0.02 0.004 TRUE
SALTED 0.05 0.01 TRUE
CHAINING 0.05 0.01 TRUE

Table 7. Table detailing outcomes of attempting to reverse the stored strong password JeffPurpleCats76! using
dictionary attacks. The data includes the total time to reverse it 5 times from each technique, the average time to

reverse each technique once, and whether the reversal was successful.

Technique Total Time (hours) Avg. Time (hours) Successful

BCRYPT 584.88 116.976 TRUE

SHA-256 0.15 0.03 TRUE

SALTED 0.17 0.03 TRUE

CHAINING 0.16 0.03 TRUE
Overall Analysis

ISSN: 2167-1907

www.JSR.org

HIGH ECHODEEIITION Volume 10 Issue 3 (2021)

@ Journal of Student Rescarch

To better compare all obtained data, the data is plotted on a graph as coordinate points with the x-coordinate being the
storage technique’s average performance index and the y-coordinate being the number of reversal techniques which
were able to successfully reverse it. See Figure 19. The closer the point is to the origin, the better the efficiency and
reversal difficulty of the storage technique.

CHAINING
€-SHA-256

BCRYRT

Number of Successful Reversals
w
&
m
)

5@ 100 150 200_L
i i

Performance Index

Figure 19. Overall data graphed as coordinate points with the x-coordinate being the storage technique’s average
performance index and the y-coordinate being the number of reversal techniques which were able to successfully
reverse it. Both chaining and SHA-256 have near identical values.

Discussion

ISSN: 2167-1907 www.JSR.org 12

HIGH SCHOOL EDITION

@ Journal of Student Rescarch

Volume 10 Issue 3 (2021)

The data as a whole showed strong security when using the Salted SHA-256 and BCRYPT password storage
techniques. Since plain SHA-256 and hash chaining are commonly used techniques for storing passwords, and they
fail to generate unique digests given the same password, they commonly appear in both Rainbow Tables and
dictionaries. Although they are extremely efficient compared to alternatives, the efficiency is increased at the cost of
security and reversal difficulty. Based on the graph in Figure 19, both BCRYPT and Salted SHA-256 appear to have
similar levels of security as they are both resistant to Rainbow Table attacks. However, when looking at the timings
in Table 6 and Table 7, BRYPT takes a vastly larger amount of time to reverse. This is due to the fact that it is a key-
stretching algorithm. However, BCRYPT’s security and reversal difficulty come with tradeoffs as well since it is
extremely inefficient even when compared with Salted SHA-256. Despite being much slower to reverse than
CHAINING and SHA-256, Salted SHA-256 has a very similar level of efficiency. Thus, it is the ideal choice for those
who require the best combination of security and efficiency. Between the four techniques examined in this experiment,
the ultimate decision when it comes to choosing a password storage technique is essentially a choice between Salted
SHA-256 and BCRYPT. If efficiency is not an issue in an application, BCRYPT’s security would make it the ideal
choice.

In addition to a proper password storage technique, requiring strong passwords is highly beneficial to overall
security. Especially in the instance of BCRYPT, using a strong password greatly increases the difficulty of reversal.

Conclusion

The study results show that pairing a strong password that has not been exposed in a data breach with the BCRYPT
hashing algorithm results in the most robust password security. However, SHA-256 hashing with a salt results in a
very similar level of security while maintaining solid performance. While plain SHA-256 hashing or chaining multiple
hashing algorithms together is theoretically as secure, in practice, they are easily susceptible to simple attacks and thus
should not be used in a production environment. Although choosing a good password storage technique can play a big
role in user security, much of the responsibility falls on the shoulders of the users themselves to use strong and unique
passwords that have not been exposed in past data breaches. In the end, the goal of implementing proper password
storage is to use a technique secure enough, and difficult and time-consuming enough to reverse, to deter possible
attackers.

Acknowledgments

I would not have been able to complete this project without the aid of many people. First, I would like to thank my
father and mentor, Mr. Sandip Patra, who lent me his vast technical knowledge and experience. Secondly, I would
like to thank the rest of my family and my friends for their love and support. Finally, I would like to thank the Journal
of Student Research, which made this entire project possible by making the world of research available to high school
students.

References

Arias, D. & AuthO. (2019, September 30). Hashing Passwords: One-Way Road to Security. AuthQ - Blog.
https://auth0.com/blog/hashing-passwords-one-way-road-to-security/

BlueCode Hash Finder (9.3). (2020). [Computer software]. BlueCode Team. https://bluecode.info/

ISSN: 2167-1907 www.JSR.org 13

HiGH.SGEaarFUITION Volume 10 Issue 3 (2021)

@ Journal of Student Rescarch

Bonneau, J., Herley, C., Oorschot, P. C. V., & Stajano, F. (2012). The Quest to Replace Passwords: A Framework
for Comparative Evaluation of Web Authentication Schemes. 2012 IEEE Symposium on Security and Privacy.
Published. https://doi.org/10.1109/sp.2012.44

Cloudflare, Inc. (n.d.). What is encryption? Cloudflare. Retrieved May 15, 2021, from
https://www.cloudflare.com/learning/ssl/what-is-encryption/

CrackStation. (2019, June 5). Secure Salted Password Hashing - How to do it Properly.
https://crackstation.net/hashing-security.htm

Grassi, P. A., Fenton, J. L., Newton, E. M., Perlner, R. A., Regenscheid, A. R., Burr, W. E., Richer, J. P., Lefkovitz,
N. B., Danker, J. M., Choong, Y. Y., Greene, K. K., & Theofanos, M. F. (2017). Digital identity guidelines:

authentication and lifecycle management. Digital Identity Guidelines. Published. https://doi.org/10.6028/nist.sp.800-
63b

Guide to Cryptography - OWASP. (2018, June 13). In Open Web Application Security Project.
https://wiki.owasp.org/index.php/Guide to Cryptography

N-able. (2021, April 1). SHA-256 Algorithm Overview. https://www.n-able.com/blog/sha-256-encryption

Patra, R. (n.d.). BreachDirectory - Check If Your Email or Username was Compromised. BreachDirectory -
PASSCHECK. Retrieved May 29, 2021, from https://breachdirectory.tk/passwords

Python Software Foundation. (2021, May 24). Welcome to Python.org. Python.Org. https://www.python.org/
Selinger, P. (2006, February). MD5 Collision Demo. Dalhousie University.
https://www.mscs.dal.ca/~selinger/mdScollision/

weakpass_2a. (2017). Weakpass. https://weakpass.com/wordlist/1919

Wiedenbeck, S., Waters, J., Birget, J. C., Brodskiy, A., & Memon, N. (2005). Authentication using graphical

passwords. Proceedings of the 2005 Symposium on Usable Privacy and Security - SOUPS ’05. Published.
https://doi.org/10.1145/1073001.1073002

ISSN: 2167-1907 www.JSR.org 14

