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ABSTRACT 
 
Zeckendorf proved that every positive integer N can be written uniquely as the sum of non-adjacent Fibonacci num-
bers. This property can be used to create a two-player Zeckendorf game. A recent paper proved that player 2 has the 
winning strategy for all N > 2. However, the proof was non-constructive. In fact, the paper only provided computer 
code of the winning strategy of player 2 by brute force. In this paper, we present an algorithm to efficiently solve the 
Zeckendorf game. Specifically, we convert the game to a directed graph, prove that the graph has no cycles and only 
one terminal node, and construct an iterative algorithm to find all the winning strategies of player 2. We provide an 
example to show that the proposed algorithm works much more efficiently than a brute force approach. 
 

Introduction 
 
Define the Fibonacci sequence by  
 

𝐹𝐹1 = 1,𝐹𝐹2 = 2,𝐹𝐹3 = 3,𝐹𝐹4 = 5,𝐹𝐹5 = 8,𝐹𝐹6 = 13,𝐹𝐹7 = 21, …, 
 
instead of the usual 1, 1, 2, 3, 5, …. Two properties follow from the definition of the Fibonacci sequence. First, for 
any number x in the Fibonacci sequence, two numbers y, z with y < z exist in the Fibonacci sequence such that y +
z = 2x. It can be easily shown that if Fn = x for some n, then Fn−2 = y and Fn+1 = z. Second, suppose that two 
numbers x, y with x < y are in the Fibonacci sequence. If x and y are adjacent with each other, then x + y is immedi-
ately after y in the Fibonacci sequence. If x and y are not adjacent, then x + y is not in the Fibonacci sequence, because 
x + y is smaller than any number after y in the Fibonacci sequence. 

The famous theorem of Zeckendorf (Zeckendorf 1972) states that each positive integer 𝑁𝑁 can be written uniquely 
as the sum of distinct, non-adjacent Fibonacci numbers. This property can be used to create a two-player Zeckendorf 
game. Specifically, consider positions, 𝑛𝑛 = 1,2, …, and place 𝑀𝑀𝑛𝑛 coins position 𝑛𝑛 where 𝑀𝑀𝑛𝑛 is a non-negative integer. 
The value of a coin at position 𝑛𝑛 is given by 𝐹𝐹𝑛𝑛. For any set of coins, the total value of the coins is equal to the sum of 
the values of all the individual coins, ∑ 𝑀𝑀𝑛𝑛𝐹𝐹𝑛𝑛𝑛𝑛=1,2,… . 

From the above two properties, the following two moves are considered legal to exchange coins at different 
positions because the total value of the coins are preserved with the moves. Figure 1 illustrates the two legal moves. 
 

1. If there are at least two coins at position 𝑛𝑛, one can exchange the two coins with one coin at position 𝑛𝑛 − 2 
and another one at position 𝑛𝑛 + 1. A special case is that one can exchange two coins at position 2 with one 
coin at position 1 and one at position 3. 

2. If there are at least one coin at position 𝑛𝑛 and at least one coin at position 𝑛𝑛 + 1, one can exchange the two 
coins for one coin at position 𝑛𝑛 + 2. A special case is that one can exchange two coins at position 1 with one 
coin at position 2. 
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The two-player Zeckendorf game works as follows. Initially there are N coins at position 1. Player 1, referred to as A, 
makes a first legal move. Player 2, referred to as B, then makes a second legal move, and so on. The player who cannot 
find a legal move loses. The game stops when there is no legal next move.  
It is easy to check that A wins the game for N = 2. For all N > 2, it was shown in (Baird-Smith et al. 2020) that B 
always has a winning strategy. However, the proof was non-constructive. In fact, the paper only provided computer 
code of the winning strategy of B by brute force. Subsequent studies, e.g., (Li 2020), have not adequately investigated 
constructive algorithms of the winning strategy. In this paper, we present an algorithm to efficiently solve the Zecken-
dorf game. 
 
A Directed Graph Model 
 
The state of the game at any moment can be uniquely described by the vector (𝑀𝑀1,𝑀𝑀2, … ). The evolution of the game 
can be described by a directed graph, where nodes α and β represent two states and an edge 𝐸𝐸𝛼𝛼→𝛽𝛽 that connects from 
node α to node β represents a legal move from one state to the other. An edge corresponds to either rule 1 or 2. Because 
the total value of the coins is preserved and equal to 𝑁𝑁, the number of nodes in the directed graph is finite. Figure 2 
illustrates the concept of the directed graph description of the game. Note that the figure shows only one terminal 
node. We will show in the following that there is indeed only one terminal node. 
 

 

 
First, we prove that the directed graph consists of no cycles. Consider the following two scores,  
𝑆𝑆1 = ∑ 2𝑛𝑛−1𝑀𝑀𝑛𝑛,𝑛𝑛=1,2,…   
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𝑆𝑆2 = ∑ 𝑀𝑀𝑛𝑛𝑛𝑛=1,2,… . 
Note that each time when rule 2 is applied, 𝑆𝑆2 decrements by 1. A cycle, if exists, cannot have an edge corresponding 
to rule 2, and thus must go through nodes using only rule 1. However, each time when rule 1 is applied, 𝑆𝑆1 strictly 
increases1 because  

2 ∙ 2𝑛𝑛−1 < 1 ∙ 2𝑛𝑛−3 + 1 ∙ 2𝑛𝑛. 
Hence, it is impossible for a cycle to exist. 
 
Without a cycle, the directed graph therefore has a finite number of terminal nodes. A terminal node 𝛼𝛼𝑇𝑇 is where the 
game stops. We show next that there is only one terminal node that satisfies the following two properties. 
𝑀𝑀𝑛𝑛 = 0,1 for any 𝑛𝑛. 
If 𝑀𝑀𝑛𝑛 = 1, for some 𝑛𝑛, then 𝑀𝑀𝑛𝑛+1.  
The first property holds because if 𝑀𝑀𝑛𝑛 > 1  at some node, one can apply rule 1 to make a legal move. The node cannot 
be a terminal node. Similarly, the second property holds because if 𝑀𝑀𝑛𝑛 = 𝑀𝑀𝑛𝑛+1 = 1, one can apply rule 2 to make a 
legal move. 
 
Furthermore, assume that there are two distinct terminal nodes (𝑀𝑀1,𝑀𝑀2, … ) and (𝑀𝑀′1,𝑀𝑀′2, … ). Suppose that 𝑘𝑘 is the 
largest positive integer for which 𝑀𝑀𝑘𝑘 and 𝑀𝑀′𝑘𝑘 differ. That is, for any 𝑛𝑛 > 𝑘𝑘, 𝑀𝑀𝑛𝑛 = 𝑀𝑀′𝑛𝑛. Without loss of generality, 
suppose that 𝑀𝑀𝑘𝑘 = 1 and 𝑀𝑀′𝑘𝑘 = 0. From the definition of the Fibonacci sequence,  

𝐹𝐹𝑘𝑘 > 𝐹𝐹𝑘𝑘−1 + 𝐹𝐹𝑘𝑘−3 + 𝐹𝐹𝑘𝑘−5 + ⋯. 
Therefore, it follows from the above two properties of a terminal node that  

� 𝑀𝑀𝑛𝑛𝐹𝐹𝑛𝑛 > � 𝑀𝑀′𝑛𝑛𝐹𝐹𝑛𝑛
𝑛𝑛=1,2,…

,
𝑛𝑛=1,2,…

 

which is impossible because the two terminal nodes must have the same total value. The fact that the terminal node is 
unique can also be established from the Zeckendorf Theorem, which states that any number has a unique representation 
as the sum of distinct, non-consecutive Fibonacci numbers. 
 
In summary, we have shown that the game takes a finite number of steps evolving along the directed graph from the 
starting node 𝛼𝛼0 = (𝑁𝑁, 0,0, … ) to the unique terminal node 𝛼𝛼𝑇𝑇. Figure 3 provides a few examples of the directed 
graph. The nodes can be grouped in multiple levels where ∑ 𝑀𝑀𝑛𝑛𝑛𝑛=1,2,…  is the same for all nodes on the same level. 
Observe that any edge is from a node in one level to another node either on the same level or one level below.  
 

 
Figure 3. Directed graph examples of 𝑁𝑁 = 3,4,5,6,7. B’s selections along a winning path are marked in yellow so that 
one can trace the winning path from the starting node to the terminal node. 
 

 
1 𝑆𝑆1 remains the same when the special case of rule 1 is applied. However, it is impossible to keep on applying only 
the special case of rule 1 forever. 
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In the simple case of 𝑁𝑁 = 3, the winning strategy is straightforward because there is only one path from 𝛼𝛼0 to 𝛼𝛼𝑇𝑇. In 
any other cases, there are multiple paths and B may lose the game if a wrong move is selected. For example, at 𝑁𝑁 = 3, 
if B selects (1,2,0,0) after A's move (3,1,0,0), then A can select (2,0,1,0), leading to B's loss. The winning path for 
B is  

(5,0,0,0) → 𝐴𝐴: (3,1,0,0) → 𝐵𝐵: (2,0,1,0) → 𝐴𝐴: (0,1,1,0) → 𝐵𝐵: (0,0,0,1) 
Similarly, the winning paths for B at 𝑁𝑁 = 4,6,7 are given by 

(4,0,0) → 𝐴𝐴: (2,1,0) → 𝐵𝐵: (1,0,1), 
(6,0,0,0) → 𝐴𝐴: (4,1,0,0) → 𝐵𝐵: (3,0,1,0) → 𝐴𝐴: (1,1,1,0) → 𝐵𝐵: (1,0,0,1), 

(7,0,0,0) → 𝐴𝐴: (5,1,0,0) → 𝐵𝐵: (4,0,1,0) → 𝐴𝐴: (2,1,1,0) → 𝐵𝐵: (1,0,2,0) → 𝐴𝐴: (2,0,0,1) → 𝐵𝐵: (0,1,0,1). 
 
B's selections along the winning paths are marked in yellow in Figure 3. Observe in the above examples that the 
winning path for B is unique. However, later we will show that this observation does not hold in general. 
 

An Algorithm to Find All Winning Strategies 
 
We present an algorithm that can find all winning strategies for B. For any 𝑁𝑁, 𝛼𝛼𝑇𝑇 can be found with an iterative greedy 
algorithm. First, find 𝑘𝑘 such that 

𝐹𝐹𝑘𝑘 ≤ 𝑁𝑁 < 𝐹𝐹𝑘𝑘+1. 
Set 𝑀𝑀𝑘𝑘 = 1. Let   

𝑁𝑁 = 𝑁𝑁 − 𝐹𝐹𝑘𝑘 . 
Repeat the above steps until 𝑁𝑁 = 0. It can be shown from the definition of the Fibonacci sequence that 𝑁𝑁 must become 
0 eventually. Therefore, the above algorithm converges. For example, for 𝑁𝑁 = 16, 𝛼𝛼𝑇𝑇 = (0,0,1,0,0,1). 
 
Define the winning paths the set of paths along the directed graph such that B is guaranteed to win. For a node taken 
by B on the winning paths, A has one or multiple legal next moves to select. For each of the moves, B must have a 
corresponding move, i.e., winning strategy, to stay on the winning paths. Denote Ω𝐵𝐵 the set of the nodes that B takes 
on the winning paths. Clearly, 𝛼𝛼𝑇𝑇 ∈ Ω𝐵𝐵. We next determine Ω𝐵𝐵 iteratively from 𝛼𝛼𝑇𝑇. 
 
If an edge 𝐸𝐸𝛼𝛼→𝛽𝛽 exists in the directed graph, then node 𝛼𝛼 is referred to as a parent node of 𝛽𝛽 and 𝛽𝛽 as a child node of 
𝛼𝛼. Denote Γ𝛽𝛽 the set of all the parent nodes of 𝛽𝛽 and Δ𝛼𝛼  the set of all the child nodes of 𝛼𝛼. For any 𝛼𝛼, we can employ 
the two legal moves shown in Figure 1 to find Δ𝛼𝛼 . For any 𝛽𝛽 we can employ the reverse rules, defined in Figure 4, to 
find Γ𝛽𝛽. The reverse rules are the opposite operations of the two legal moves. 

 

 
 
Figure 4. Illustration of the reverse rules, which are reverse from the two legal moves shown in Figure 1. 
 
Denote Ω𝐴𝐴 the set of the parent nodes of the nodes in Ω𝐵𝐵. Initially, Ω𝐴𝐴 and Ω𝐵𝐵 are both empty. Each iteration of the 
algorithm consists of the following two steps. 
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Step 1. Denote O𝐵𝐵 the set of the newly added node(s) to Ω𝐵𝐵, i.e., update Ω𝐵𝐵 
Ω𝐵𝐵 = Ω𝐵𝐵 ∪ O𝐵𝐵 

In the first iteration, set  
O𝐵𝐵 = {𝛼𝛼𝑇𝑇}. 

Denote O𝐴𝐴 the set of the parent nodes of all the nodes in O𝐵𝐵, 

O𝐴𝐴 = � Γ𝛽𝛽
𝛽𝛽∈𝑂𝑂𝐵𝐵

. 

 
Add O𝐴𝐴 to Ω𝐴𝐴, i.e., update Ω𝐴𝐴 

Ω𝐴𝐴 = Ω𝐴𝐴 ∪ O𝐴𝐴. 
 

Step 2. Reset O𝐵𝐵 to empty. ∀𝛼𝛼 ∈ 𝑂𝑂𝐴𝐴, check every parent node 𝛾𝛾 ∈ Γ𝛼𝛼 to see whether all the child nodes of 𝛾𝛾 belong 
to Ω𝐴𝐴, i.e.,  

Δ𝛾𝛾 ⊆ Ω𝐴𝐴. 
If so, add 𝛾𝛾 to O𝐵𝐵, 

O𝐵𝐵 = O𝐵𝐵 ∪ {𝛾𝛾}. 
After all the 𝛼𝛼 in 𝑂𝑂𝐴𝐴 have been checked, proceed to the first step of the next iteration. 
 

The above iteration end when O𝐵𝐵 constructed in the second step consists of only 𝛼𝛼0, in which case the algorithm 
has already reached the starting node and B has a winning strategy.  

 

 
Figure 5. Illustration of one iteration of the algorithm. 
 

Figure 5 depicts the two steps in an iteration of the algorithm. The first step ensures that if A takes any move 
𝛼𝛼 ∈ 𝑂𝑂𝐴𝐴, B has at least one legal move to reach a node in 𝑂𝑂𝐵𝐵 (and thus Ω𝐵𝐵). The second step ensures that any new 
node 𝛾𝛾 to be added to 𝑂𝑂𝐵𝐵 (and thus Ω𝐵𝐵), all its child nodes belong to Ω𝐴𝐴. As a result, after B takes move 𝛾𝛾, A will 
not be able to move out of set Ω𝐴𝐴. By construction, B will then have a legal move to stay in Ω𝐵𝐵. 

As examples, Ω𝐵𝐵 for 𝑁𝑁 = 4,5,6,7 are marked in yellow in Figure 3. The winning strategy can be easily deter-
mined from Ω𝐵𝐵: for any move by A, select a legal move that leads to a node in Ω𝐵𝐵. 

The salient features of the iterative algorithm are as follows. 
• The algorithm can find all the winning strategies.  
• Unlike a brute-force approach, the algorithm only examines a subset of nodes and edges of the directed 

graph, therefore reducing the search complexity. 
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Figure 6. Illustration of a subtle point in the algorithm. 
 
Figure 6 depicts a subtle but interesting scenario in the algorithm. In one iteration, suppose that node 𝛾𝛾1 ∈ O𝐵𝐵, which 
is labeled as O𝐵𝐵1. Suppose that α1 is 𝛾𝛾1's parent node and added to 𝑂𝑂𝐴𝐴, which is labeled as 𝑂𝑂𝐴𝐴1. Suppose that 𝛾𝛾2 and 
𝛾𝛾3 are both parent nodes of α1. 𝛾𝛾2 has only one child node α1 ∈ 𝑂𝑂𝐴𝐴1, and is thus added to O𝐵𝐵, which is labeled as O𝐵𝐵2, 
for the next iteration. Meanwhile, 𝛾𝛾3 has another child node α2, which is not in 𝑂𝑂𝐴𝐴1 or its superset Ω𝐴𝐴 (not shown in 
the figure). Thus, 𝛾𝛾3 is thus not added to O𝐵𝐵2. In the next iteration, α2 is a parent node of 𝛾𝛾2 and added to 𝑂𝑂𝐴𝐴, labeled 
as 𝑂𝑂𝐴𝐴2. 𝛾𝛾3 is a parent node of α2. Now because all 𝛾𝛾3's child nodes are in Ω𝐴𝐴, a superset of 𝑂𝑂𝐴𝐴1 and 𝑂𝑂𝐴𝐴2, in this iteration 
𝛾𝛾3 is now added to O𝐵𝐵, which is labeled as O𝐵𝐵3. 
 

An Example and Some Observations 
 
We use the iterative algorithm to find the winning strategies 𝑁𝑁 = 16. Figure 7 shows the complete directed graph 
including all the valid nodes and legal moves. Like Figure 3, Ω𝐵𝐵 found by the algorithm is marked in yellow. 
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Figure 7. Complete directed graph of 𝑁𝑁 = 16. 
 
Figure 8 shows all the winning strategies in the form of a reduced directed graph, which are easily derived from Ω𝐵𝐵. 
Specifically, all the nodes in Ω𝐵𝐵, marked in yellow, remain in the reduced directed graph. Their child nodes also 
remain and are unmarked in Figure 8. All other nodes are discarded and marked in grey. Any edge connected with a 
grey node is discarded. Any edge between two unmarked nodes is discarded. The remaining edges are either from a 
yellow node to an unmarked node or vice versa. 
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Figure 8. Diagram of all the winning strategies of 𝑁𝑁 = 16 as a reduced directed graph. 
 
A few observations are worth highlighting. 

• Comparison between Figures 7 and 9 indicates that the reduced directed graph is significantly simpler than 
the complete directed graph because a number of nodes and edges are discarded.  

• A winning path starts from α0, marked in yellow. Player B always takes a yellow node, forcing player A to 
take an unmarked node. The game state alternates between the unmarked and yellow nodes, and finally 
reaches α𝑇𝑇, also marked in yellow, indicating that B wins the game. 

• Observe that there are multiple winning paths. The reason is that a yellow node may have multiple child 
nodes, meaning that A can choose to take any of them. In addition, an unmarked node may have multiple 
yellow child nodes, meaning that B has more than one choice to respond to A's move. 
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Conclusion and Future Work 
 
In this paper, we have formulated the Zeckendorf game in a directed graph model and proved a few properties. We 
have then presented an iterative algorithm that finds all winning strategies and shown that the proposed algorithm 
works much more efficiently than a brute force approach.  

For the future work, we would like to extend the algorithm to other two-player games, such as the generalized 
Zeckendorf game (Baird-Smith 2018) and theoretically analyze the complexity of the algorithm.  
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