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ABSTRACT 
 
To date, researchers do not know the exact reasons for the loss of dopaminergic neurons in the substantia nigra pars 
compacta that leads to Parkinson’s Disease (PD). Thus, it is extremely difficult to predict whether or not a patient is 
likely to develop the disease later on, as their risk increases with age. However, once patients present with the common 
symptoms indicative of the illness, a substantial amount of dopaminergic neurons are already lost. Seeing as there are 
no current avenues of replacing those neurons, predictive diagnosis and preventive measures could be of extraordinary 
help in devising treatments. Our aim was to use the research into possible high-risk genetic factors from genome-wide 
association studies (GWAS) to formulate a predictive neural network model for Parkinson’s. We analyzed patient 
genomes for mutations in the top 20 genes associated with PD, as well as 21 genes implicated in axon guidance 
pathways, to determine whether the patients were at high or low risk for Parkinson’s. Our model produced an accuracy 
and AUROC of 94%. We found this significant because it showed a strong correlation between the single nucleotide 
polymorphisms (SNPs) we analyzed and PD. We believe our model can be further improved upon by adding consid-
erations for other investigated risk factors, such as patient age, familial history of disease, or gut microbiota inconsist-
encies among others. 
 

Introduction 
 
Parkinson’s Disease stands as the second most common neurodegenerative disease with an average onset of 70 years 
old1. The disease is characterized by a loss of neurons that produce dopamine in the substantia nigra pars compacta, a 
basal ganglia structure in the midbrain. Research has shown that this neuronal cell loss is in large part due to the 
accumulation of misfolded, phosphorylated 𝛼𝛼-synuclein proteins, forming aggregates called Lewy Bodies2. PD pa-
tients display significant motor deficiency symptoms, including difficulty maintaining balance, freezing of gait, and 
difficulty initiating movements like walking. Tremors, which worsen with the progression of the disease, bradykinesia, 
and muscle rigidity are other symptoms. Non-motor symptoms consist of dementia, sleep disorders, and depression3. 
Current treatments include administering drugs like Levodopa (L-Dopa), a molecule similar in structure to dopamine, 
in the striatum to facilitate increased dopamine uptake, as well as deep brain stimulators that are surgically implanted 
and stimulate the motor cortex to rescue loss of motor function4.  

However, by the time patients present with symptoms, they have already been found to exhibit Lewy Body 
pathology and neuronal cell loss5. Consequently, scientists have been conducting research into the causal factors of 
the disease in an effort to prevent neurodegeneration in the first place. One avenue of study has been into the genetic 
factors because of the way certain genes have recently been found to be correlated to certain diseases (for example, 
the BRCA1 gene and breast cancer)6. Parkinson’s occurs in two forms: the familial form, which accounts for around 
10% of cases, and the sporadic form, which accounts for around 90% of cases7. Several GWAS have been done to 
take a deeper look into the genetic risk factors associated with both familial and sporadic PD, identifying mutations 
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in the SNCA, LRRK2, PINK1, and PARK genes among others that have been shown to increase the likelihood of 
contracting the disease8. The study conducted by Maraganore et al. 2005 identified many single nucleotide polymor-
phisms (SNPs), the substitutions of a single base in a DNA sequence, present in each patient’s genome and analyzed 
them to determine which ones were most prevalent in individuals with PD and which ones might constitute a higher 
risk factor9. In a subsequent study, several of these SNPs were found to be involved in axon guidance pathways, or 
the processes by which axons make connections with other neurons. The failure of these pathways has been implicated 
in increasing PD risk in patients10. 

Our research strives to utilize deep learning neural networks, a subset of machine learning, to explore the 
influence of multiple genetic risk factors on the likelihood of a patient contracting Parkinson’s Disease. Creating deep 
learning models occurs in several stages: the programming stage, training stage, and the ready-for-use stage. In the 
programming stage, engineers encode specific algorithms into the deep neural network that are relevant to the infor-
mation that will be processed. They then train the neural network on large amounts of data, in which the program will 
be able to identify patterns to predict the target outcome in future cases. This is the stage where neural networks differ 
from machine learning, in that there is less preprocessing of data required before beginning training because the model 
does not need help identifying the importance of different patterns it finds: it will be able to determine that on its own. 
Finally, engineers can input data, and based on the patterns identified in the training stage, the program will generate 
outputs. In the case of this model, the completed neural network was able to take in a patient’s genetic data as the 
input to the model and output a prediction for whether the patient had PD (either high risk or low risk). 
 

Review of Literature 
 
In the past, machine learning has been used to determine the severity of the phenotype displayed by the diseased 
individual. For example, one algorithm utilized videos of gait, drawing patterns based on the way patients walked and 
focusing especially on the freezing of gait that is particularly significant in Parkinson’s patients11. Another model was 
trained to analyze differences in the way Parkinson’s patients write or draw compared to healthy controls due to the 
fact that Parkinson’s individuals have resting tremors that disrupt their ability to write or draw with a steady hand12. 
There are even algorithms that analyze voice recordings to look for patterns in speech that vary from Parkinson’s 
individuals to healthy individuals13. However, there hasn’t been as much research into how the genetic components of 
Parkinson’s can be used to develop a predictive model; hence, that was the direction our research took. 
 

Methods 
 
Data Sources 
We retrieved patient genome data from Phase 3 of the International HapMap Project13, which included patients from 
11 different populations (ASW: African ancestry in Southwest USA, CEU: Utah residents with Northern and Western 
European ancestry from the CEPH collection, CHB: Han Chinese in Beijing, China, CHD: Chinese in Metropolitan 
Denver, Colorado, GIH: Gujarati Indians in Houston, Texas, JPT: Japanese in Tokyo, Japan, LWK: Luhya in Webuye, 
Kenya, MXL: Mexican ancestry in Los Angeles, California, MKK: Maasai in Kinyawa, Kenya, TSI: Toscani in Italia, 
and YRI: Yoruba in Ibadan, Nigeria). As for gene data, we looked at Text File 114 located in the Supplementary 
Materials section from the GWAS conducted by Maraganore et al. 20058. Furthermore, we utilized the results of the 
paper by Lesnick et al. 200714, which sought to investigate the correlation between genes related to axon-guidance 
pathways and their effect on PD. Specifically, we used the results from Table 1 in their paper (Supplementary Mate-
rials #4), which listed all the SNPs in genes expressed in axon-guidance pathways in the brain that were proven to 
have a higher correlation to PD, to help us construct our neural network. 
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Data Preparation 
Before constructing the neural network model, we had to prepare the data. All of our work was implemented in Python 
and was conducted in a Google Colab Notebook, which is essentially an environment that supports libraries such as 
Pandas, Keras, and TensorFlow, and allows one to build and train a machine learning model.  
 
Processing the Gene Data 
We loaded the SNPs related to axon-guidance pathways and then cropped this dataframe to only include the rsID’s 
(specific way to characterize each gene mutation), as all other columns were irrelevant for this data processing stage. 
We also loaded the GWAS SNPs from the aforementioned Text File 1. However, the amount of SNPs in the GWAS 
data was approximately 198,000, so we decided to only include the 20 SNPs with the lowest P-values (indicative of 
the highest correlation to PD). Next, we cropped this dataframe to only include the rsID’s. Finally, we combined both 
the 20 GWAS rsID’s and the 21 axon-guidance pathway rsID’s to obtain an array of the rsID’s of all 41 SNPs that 
were proven to have the highest correlation to PD (definitive PD SNPs) (Table 1). 
 
Table 1: Definitive PD SNP and Gene Function Table. This table includes the 20 SNPs found to be most correlated 
with Parkinson’s Disease based on the patient data from the Maraganore et al. GWAS study, as well as the 21 SNPs 
found to be associated with axon guidance pathways as an extension of the same study. The table further expands on 
the gene in which the SNP is located as well as the general function of the gene. See Supplementary Materials for full 
table. 
 
 

Definitive PD SNP and Gene Function Table 

rsID Gene Name Function 

rs10815285 ERMP1 activates endoplasmic reticulum metallopeptidase activity 

rs10917325 EPHB2 
encodes receptor tyrosine kinase transmembrane glycopro-
teins, responsible for division and motility 

 
 
 
 
 

rs9688032 SLIT3 involved in effecting cell migration 

rs9789345 SLC8A1 encodes solute carrier family 8 member A1 
 
 
Processing the Patient Data 
Next, we had to load each of the 11 patient data files for each population. We kept only the SNPs for each patient 
which were present in the aforementioned definitive PD SNPs. We then computed the percentage of definitive PD 
SNPs that were present in each patient by dividing the count of definitive PD SNPs present by the total number of 
definitive PD SNPs (41). Finally, we had to make an educated guess as to whether each patient was at high-risk or 
low-risk for contracting PD. If the calculated mutation percentage was greater than the threshold value of 30%, we 
annotated the patient with a “1” (high-risk), and if the percentage was less than or equal to 30%, the patient was 
marked with a “0” (low-risk). 
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Constructing the Neural Network 
Our goal was to construct a supervised machine learning model where the input was the patient SNP data and the 
output was the model’s prediction of the patient’s risk level (high or low).  
 
Preparing Training/Test Datasets 
In order to construct well distributed training and test subsets from the curated patient data, we used the following 
approach: 

- First, we evaluated each population in the patient data set by further grouping them into high-risk and low-
risk groups based on the risk value (0 or 1). 

- Then for each risk group, we further divided the high-risk group into a 90/10 train-test split and the low-
risk group into a 40/60 train-test split.  

- Finally, we aggregated all of the training and test subgroups across all 11 populations into combined train-
ing and test datasets.  

- We also prepared a second group of 11 test datasets corresponding to each of the 11 populations, so that 
population-wise testing could be done (Fig. 4).  

- We then compared the accuracy produced by using the test subgroup across all 11 populations and the ac-
curacy produced by testing individual populations as a whole.  

 

 
Figure 1. This flowchart illustrates the steps we took in order to conduct our research. The first step was the data 
preprocessing, which is highlighted in blue and yellow. Finally, the model outputs its prediction of a patient’s risk 
value, as well as the scores of various metrics that were used to evaluate the model’s performance. 
 

Volume 10 Issue 3 (2021) 

ISSN: 2167-1907 www.JSR.org 4



 

Neural Network Design/Execution 
We constructed a multilayer perceptron (Deep Neural Network) architecture to compute whether a patient was at high-
risk or low-risk for PD. Our model was Sequential and consisted of one input Dense layer, multiple hidden Dense 
layers, and one output Dense layer. The input and hidden layers had multiple nodes (neurons) while the output layer 
had only two nodes, corresponding to the two categorical outputs (0 or 1). We used ReLU as the activation function 
for the input and hidden layers and Softmax as the activation function for the output layer (Fig. 2). Additionally, we 
utilized a Dropout layer in between the Dense layers with a Dropout rate of 0.25 to prevent overfitting. Finally, when 
compiling our model we used the ‘Adam’ optimizer and a ‘Binary Cross-Entropy’ loss function.  

We experimented with multiple architectures by modifying the number of layers and nodes per layer to 
achieve optimal accuracy. For each architecture, we trained our model on the training dataset. We set the number of 
Epochs to 50 during each run. We then tested that model with each of the individual population datasets and compared 
performances using various metrics (see Results for analysis of different metrics). 

 
Figure 2. This figure details the basic outline of the deep neural network we constructed. The input is the patient 
genotype data while the output is the patient’s risk of contracting PD, classified as a 0 or 1.  
 

Results 
 
Various Methods to Evaluate Neural Network Performance 
When evaluating the performance of neural networks, there are many tests one may use. The simplest and most popular 
test is the accuracy test. 

Another test we carried out was the F1 score, which is the harmonic mean of precision ((TP)/(TP+FP)) and 
recall ((TP)/(TP+FN)), where TP, FP, and FN is the number of true positives, false positives, and false negatives 
respectively. An increase in precision often leads to a sacrifice in recall, and vice versa, so the precision-recall tradeoff 
is averaged into a reliable F1 score. 
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The Area Under the Receiver Operating Characteristic Curve (AUROC) is the final score we computed. The Receiver 
Operating Characteristic plots the true-positive rate against the false-positive rate, and is also not affected much by 
imbalances in the data. 
 
Comparison of Different Neural Network Architectures 
One of the areas in which neural networks differ the most is architecture. After testing many different architectures 
with different numbers of layers as well as different numbers of nodes in each layer, we found that our highest-
performing neural network, 41-20-2, achieved an accuracy of 94%, an F1 score of 70%, a Cohen’s Kappa of 68%, 
and an AUROC of 94% (Fig. 3). Because accuracy neglects the imbalances in the data, we used F1 score, Cohen’s 
Kappa score, and AUROC as more reliable ways for comparing the different architectures. 
 

 
Figure 3. This graph compares the scores of various metrics that were used to evaluate our model’s performance when 
testing each population as a whole. 
 
Accuracy for Data Sets of Varied Composition 
The population our best model (41-20-2) performed the best on was TSI (Toscani in Italia) with an accuracy of 96%. 
The population our model performed the worst on was GIH, (Gujarati Indians in Houston, Texas) with an accuracy of 
81%. In testing each individual population, we achieved an average accuracy of 88%, compared to our overall testing 
accuracy of 95% (Fig. 4). 
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Figure 4. The graph above shows the distribution of accuracy scores across the 11 different population groups (shown 
in blue), as well as the accuracy of our model when testing against all 11 populations overall (shown in red). 

 
Discussion 
 
A drawback of the accuracy test is that it does not account for the imbalances in the training and testing data, which 
spawn from an uneven distribution of the high-risk patients and low-risk patients in the data. One test we used that 
resolves this problem is the Cohen’s Kappa coefficient, which is a measure of the agreement between the model’s 
predictions and actual outputs compared to pure chance. However, the Cohen's Kappa, F1 score, and AUROC, unlike 
accuracy, are still very reliable when the data is greatly skewed. When discussing Cohen’s Kappa scores, a Kappa 
coefficient above 0.60 is generally accepted as a “good” result15, meaning our model has significant predicting power. 

 
Conclusion and Implications 
 
Ultimately, we sought to create a neural network model that learned to correlate 41 different SNPs to whether a patient 
was high-risk or low-risk to PD. Currently, there is no neural network model that exists with the ability to determine 
a patient’s risk to PD with high accuracy and convenience, making our findings extremely relevant. Our model can be 
used in the real world to predict a patient’s risk to PD, simply given their genotype sample. 
 

Future Research 
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We seek to expand this model to be able to perform a higher complexity, non-binary task, such as multi-class classi-
fication into different risk groups or outputting percentage risks for PD while maintaining high accuracy. Furthermore, 
more genes or other risk factors, like patient age and prodromal illnesses, may be utilized in future models. Instead of 
a supervised neural network, an unsupervised machine learning algorithm could be used to group patients into risk 
groups. In the future, our model can be significantly improved if it can be trained on a combination of patient genotypic 
and phenotypic data, such as additional SNPs, voice patterns, drawing samples, and gait analysis, resulting in a more 
accurate PD predictor. 
 

Limitations 
 
We were able to achieve our high model accuracies largely due to the simple task complexity, as our model only 
needed to compute a binary classification. One challenge we encountered was that in the beginning, our model pre-
dicted almost all low-risk, and was extremely hesitant to predict high-risk. We hypothesized that this was due to the 
fact that our training data was highly imbalanced, having significantly more healthy patients than PD patients. Because 
of this, our neural network algorithm quickly learned that only predicting low-risk would easily achieve high accuracy. 
To fix this, we adjusted the test-train split from 80/20 to 90/10 for the high-risks and from 80/20 to 40/60 for the low-
risks. After this rectification, our model predicted fewer false negatives, improving our overall accuracy. 
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