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ABSTRACT 
 
The purpose of this study is to gain an understanding of the impact of model architecture on the efficacy of adversarial 
examples against machine learning systems implemented in self-driving applications. Prior research shows how to 
create and train against adversarial examples in many use cases; however, there is no definite understanding of how a 
machine learning model’s architecture affects the efficacy of adversarial examples. Data was collected through an 
experimental setting involving end-to-end self-driving models trained through behavioral cloning. Three model types 
were tested based on popular frameworks for machine learning algorithms dealing with images. Results showed a 
statistically significant difference in the impact of adversarial examples between these models. This means that certain 
model types and architectures are more susceptible to attacks. Therefore, the conclusion can be made that model 
architecture does impact the efficacy of adversarial examples; however, this is potentially limited to closed-loop, end-
to-end systems in which algorithms make the entire decision. Future research should investigate what specific struc-
ture within models causes increased susceptibility to adversarial attacks. 
 

Introduction 
 
Machine learning is the process in which a computer develops its own method for completing a task by recognizing 
patterns [1]. Recent advances in machine learning research have allowed companies in the private sector to create 
technology such as facial recognition-equipped cameras and predictive tools for the stock market. This technology 
has wormed its way into people’s everyday lives with its various applications such as those in social media and voice-
based assistants. The integration of machine learning algorithms into the physical world is increasing, especially with 
the billions of dollars being poured into machine learning research. 

Specifically, artificial neural networks (ANNs), a type of machine learning algorithm that has many layers 
of artificial neurons, have gained immense traction in various machine learning applications in recent years [2], [3]. 
However, this type of algorithm has an issue. Adversarial examples, defined as carefully curated inputs that fool 
machine learning systems, are highly effective against ANNs [4], [5]. As these types of machine learning algorithms 
gain popularity and influence over human lives, we must look at how they can be protected in the event of malicious 
attacks. Adversarial examples pose a real problem to machine learning systems as they are often created to be imper-
ceptible to humans. Although there is plentiful research on machine learning and adversarial examples individually, 
the factors that impact how well adversarial examples can impact a machine learning system have seldom been re-
searched. I will be using virtual representations of self-driving vehicles with various model architectures to record the 
impact adversarial examples have on the vehicle’s driving efficacy. My goal will be to answer the question: to what 
extent does model architecture impact adversarial example effectivity in self-driving vehicles? 
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History of Machine Learning in Self-Driving 
 
Early computer vision applications for autonomous vehicles came with the introduction of computational approaches 
to edge detection, as seen in the paper by John Canny [6]. His paper from 1984 discusses methods to find edges from 
raw image data through fixed transformations of the pixels. Initial methods created for picture manipulation and fea-
ture extraction led to a race to produce autonomous vehicles. Kanade, Thorpe, and Whittaker, who researched early 
implementations of computational approaches to self-driving vehicles, discuss their attempt to create a self-driving 
vehicle that utilizes computational methods to find optimal paths along sidewalks [6]. Although their implementation 
of driving algorithms does not have any machine learning aspect, their research showed that real-time, completely 
autonomous navigation was possible and feasible. 

Later research and the DARPA Grand challenges brought attention to computational self-driving, with uni-
versities competing against each other to build completely autonomous vehicles that could traverse deserts and urban 
cityscapes. These challenges showed the world that self-driving vehicles were possible and relied heavily on machine 
learning algorithms to make decisions. 
 
Current Implementations 
 
The field of machine learning and its applications has grown vastly over the past 30 years, with modern-day cars 
featuring assistive self-driving capabilities that allow the vehicle to drive alongside traditional human-driven vehicles. 
In their self-published paper, researchers from Nvidia discuss an approach to self-driving vehicles through the use of 
a monocular system (single camera) at test time and a convolutional neural network. A convolutional neural network, 
or CNN, is a type of ANN that can be applied to computer vision problems. CNNs have layers that scan raw pixel 
data from an image to recognize features. This feature recognition is normally followed by layers of fully connected 
neurons that take the recognized features and outputs a classification that correlates to them [3]. The research from 
Nvidia shows that using a single camera for driving a car on roads can operate with human intervention only needed 
approximately 2% of the time during a 22-minute drive [3]. 

Over recent years, research with CNNs and their applications in image classification has allowed researchers 
and companies to realize the true potential of this technology. One of the most popular examples of CNNs becoming 
mainstream is their application in the 2010 ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where 
they performed better than any preceding model at accurately classifying images. This challenge trained algorithms 
on millions of images that fit into 1000 categories. Some of these categories are dog, train, strawberry, and so on. This 
application of machine learning is similar to the classification that occurs during the driving of a vehicle. While driv-
ing, images from cameras around the vehicle are classified into the steering angle outputs, whereas in the challenge, 
they would be in named categories. 

Recently, there has been advancement in using end-to-end models to drive vehicles [7]. These models are 
different from current commercial self-driving products as these solutions use a single CNN to take inputs from a 
forward-facing camera and directly produce a corresponding steering angle. Whereas current self-driving solutions 
have a mixture of neural networks and mathematical transformation to ensure the models have an accurate under-
standing of the vehicle’s surroundings [8]. Seeing that there is a shift towards end-to-end models in the industry, we 
must discuss the potential for malicious actors against this technology. While machine learning technology is still in 
its relative infancy, there are few attacks against the technology outside of academic settings. However, as the tech-
nology gains popularity and is increasingly integrated into our society, there will be more instances of attacks against 
it. 
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Adversarial Examples 
 
Malicious inputs to any machine learning system are commonly referred to as adversarial examples. These examples 
are carefully perturbed input samples aimed to mislead detection and will be the primary focus of my research [9]. An 
important example of adversarial examples as they will apply to fool self-driving classifiers can be seen in the paper 
by Szegedy et al., who describe adversarial examples in the context of image-based CNNs. Their paper discusses the 
creation of adversarial examples and how they impact models trained on classifying images [5]. Creating adversarial 
examples for machine learning models has become easy, with many methods being able to produce sophisticated 
attacks that are able to significantly change the output of a model while also being imperceptible to the human eye. 
However, there is no clear understanding as to what causes a machine learning model to be susceptible to adversarial 
examples in the first place. I plan to answer this by finding if there are architectures that are susceptible to adversarial 
input. This will show that certain models are impacted by adversarial examples. 
 

Experimental Framework 
 
Simulator Platform 
 
In order to create an environment where the impact of adversarial examples can be quantitatively measured against 
model architecture, there must be a way to run repeatable experiments to collect data on the behavior of a self-driving 
vehicle. Running an experiment in the real world with a self-driving technology retrofitted to a car is not feasible. 
Instead, an open-source self-driving vehicle platform, Donkey Car, was chosen. Donkey Car allows the creation and 
implementation of various machine learning systems to a physical car platform [10]. Additionally, Donkey Car in-
cludes a high-fidelity virtual simulator called Donkey Simulator. This virtual simulator option was chosen as the 
virtual environment allows for repeated testing under the same conditions every time and is more accessible compared 
to other driving simulator offerings such as TORCS (The Open Racing Car Simulator) and CARLA (An Open Urban 
Driving Simulator) due to its minimal startup cost and associated learning curve. The usage of a simulator to test self-
driving vehicles in an adversarial setting is well documented and proven to be effective [11], [12]. 

Furthermore, the Donkey Simulator returns telemetry values such as position and cross-track error, which 
allow for quantifying the efficacy of self-driving models. Donkey Car is primarily written in Python and communicates 
to the virtual simulator to receive telemetry and send actions (steering angles and throttle values). All data that is 
produced from the movement of the virtual vehicle is saved to the local computer, including images from the vehicle’s 
point of view and the generated adversarial examples. Additionally, the Donkey Car platform is flexible to adaptations 
for research in adversarial examples. As the experimenter has already had experience with the platform and Python 
prior to the current research, Donkey Car was the optimal platform for this research. 
 
Driving Model Architecture 
 
Model architecture refers to the structure of the machine learning algorithms that will be used to drive the virtual 
vehicles. The architecture consists of various layers with varying depths that perform calculations on the input field 
(images of virtual road) to produce an output (steering angle). To test the impact of changing architecture versus 
adversarial examples, three model architectures were chosen. The three model architectures are Dave-2, VGG, ResNet 
[2], [3], [13]. The differences between these models lie in the sequence of layers that make up the models. Each model 
is slightly different in how the inputs are mathematically transformed into the outputs. The Dave-2 and VGG archi-
tectures are the most similar, with VGG being slightly shallower (less layers between input and output). The main 
difference between these models is the number of filters each layer has with VGG having more layers than the Dave-
2 model. Increased filters means that each layer in the model outputs a greater amount of information to the next layer. 
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The ResNet model on the other hand introduces a mechanic that is not present in either of the other models 
in which a residual of previous layers outputs is passed to the next residual block. This means that each block of layers 
has direct connections to not only the previous block but also the block before it. Essentially, there is more intercon-
nectedness between the blocks and therefore the layers. 

The three original model architectures were first compressed to decrease the number of trainable parameters. 
Parameters are variables that allow layers to hold meaning. The original models have trainable parameters ranging 
from 250,000 to 2,000,000 parameters. The three models were compressed down to approximately between 250,000 
to 500,000 trainable parameters to ensure that the training and testing phase are able to run efficiently on the re-
searcher’s computer. The varying values of parameters have little impact on the models as the number of parameters 
has a minimal impact on outputs [14]. A detailed model architecture is available in appendix A. The Dave-2 model 
architecture was chosen for its simple implementation and its proven efficacy in self-driving applications [3]. The 
VGG and ResNet model architectures were chosen for their frequent use in machine learning applications involving 
image recognition [2], [13]. Although these models were originally created ILSVRC, their application of model ar-
chitecture for self-driving is assumed to be effective as end-to-end self-driving is parallel to image recognition, the 
only difference being instead of outputting a categorical value (type of object seen in the image), the self-driving 
application requires a continuous value (steering angle). 

Since adversarial examples have the power to change the values of the output, only the steering angle is tested 
in this experiment. This is to ensure the virtual vehicle is always moving and does not stop during the testing phase, 
as adversarial inputs could possibly output negative or zero throttle values. A constant throttle value is given so that 
the vehicle consistently traverses the same distance between timestamps. 
 
Training 
 
The next step in testing adversarial examples is the creation of the target models that will be attacked. Since the model 
architecture is finalized, we must look at training the model to drive. Behavior cloning, a method of teaching a machine 
learning algorithm how to complete a task, was implemented for the training of this model. This method was chosen 
because of its ease of implementation and its ability to “yield optimal results efficiently” [15]. Behavior cloning allows 
for pre-collected data from a human expert to be treated as a ground truth dataset. Essentially, throughout its learning 
process, the models will find features from the images presented to it to justify an expert’s outputs. Behavior cloning 
requires human-driven data collection for the expert dataset. The data used for training the target model includes an 
image from the vantage point of the car and the steering angle given by the human expert. Once the data of approxi-
mately 30,000 image and telemetry pairs were collected by driving a virtual car around the “generated road” track in 
the Donkey Simulator, the training phase of the driving model is started. 

During training, the model learns from the data fed to it by utilizing a loss function. The loss function for the 
driving models is mean squared error, a statistic that quantifies the difference between the expected output and the 
output produced by the model. The expected output while training the driving model is the human expert’s steering 
angle. While training, the loss function works in tandem with the optimizer function that looks at the loss function’s 
output at a timestamp and decides the direction the weights must move to minimize the loss function at that specific 
timestamp. Repeated movement of the weights to minimize the loss function allows for the training of the model. 

A physical representation of this movement is a gradient descent problem in a high-dimensional space. The 
loss function defines the surface that spans the space with mountains and valleys, and the optimizer decides what 
weights should be adjusted in order to find a global (or local) minimum across the surface. The optimizer chosen for 
this application is Adam for its prevalence in applications to convolutional neural networks and end-to-end systems 
[16]. While training, the model slowly decreases its loss and creates a viable generalization for the data given to it. 
This produces a model that is capable of driving solely on images fed to it through a virtual camera. The training 
method was stopped when the loss did not make a change of greater than 0.0005 units for more than five epochs 
(iterations through training data). 
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Training the machine learning models this way is similar to how a student learns in a class. The loss function 
can represent a test that returns a grade. The loss function then informs the teacher or tutor, who can be compared to 
an optimizer, on what the student needs more information on and can personalize lesson plans based on the questions 
that the student got wrong. 
 
Adversarial Example Generator 
 
Finally, in order to create varying adversarial example generators, an implementation of the Fast Gradient Sign Method 
(FGSM) was chosen [17]. This framework allows for the generation of adversarial patterns through a white box attack. 
This type of attack means that the model and all of its weights are known to the adversarial example generator. FGSM, 
by definition, shifts the pixels in the image towards the direction of greatest increase of the loss function surface 
discussed earlier (gradient ascent to counter the gradient descent in training). This shift of pixels in the generated 
adversarial example is hopefully enough to cross a decision boundary for the driving model. A decision boundary in 
this application would be the difference in pixels between two distinct angle outputs. This method constitutes an 
untargeted attack. An untargeted attack is suitable for this application because any output other than the expected 
output in a self-driving car has the potential to be catastrophic. FGSM constructs adversarial images by watching an 
image go through the model and recording the pixels that have the most influence over the output. By maximizing 
those pixel values, an adversarial pattern is generated. This pattern is then added to the original image to create the 
adversarial example. 

FGSM needs complete access to the model that is being attacked. This attack type is largely impossible to 
achieve in the real world against existing self-driving solutions as base-level access is needed to the model, the archi-
tecture, and the vehicle that is being attacked [17]. Therefore, this attack is not possible to recreate in the real world; 
however, it can still show the impact of what changing model architecture does on the effectiveness of the adversarial 
images. 
 
Testing 
 
The simulator will handle the testing of the models. Each model type will have runs with and without an adversarial 
attack. When run with an attack, an adversarial image will be injected every five frames. The testing will be allowing 
the driving model to drive around the virtual track for 20 minutes (approximately 10,000 total frames and 2000 at-
tacks). The data will contain adversarial images and the behavior (how it moves) of the vehicle as it drives along the 
track. The impact of model architecture on the efficacy of adversarial images will be determined at the image level 
and the behavioral level. At the image level, the changes between images will be measured and quantified by a Eu-
clidean distance (L2-Norm). The changes in behavior will be measured through cross-track error (CTE). This value is 
irrespective of the driving model and is a measure of the distance from the center of the right lane (the simulator is on 
a two-lane road) to the vehicle. The model architecture that is the most protected against adversarial examples will 
have the lowest overall variance in its CTE. 
 
Analysis 
 
In order to analyze the collected data, there will be two rounds of F-Tests on the CTE values from each run. This 
statistical test allows for the measurement of the change in standard deviation between two datasets. The first round 
of F-Tests will be between runs of the same model with and without an attack. This round will prove that in the case 
of each model type, the attack has a statistically significant difference in the CTE values. This can be assumed as 
between the runs with and without an attack; the only change is the presence of an adversarial attack. The second 
round of F-Tests will compare the collected CTE values between the attacked runs of each model. This will show that 
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there is a difference in the impact of adversarial examples caused by each model architecture as model architecture is 
the only thing that is changed between these runs.  
 

Results 
 
The hypothesis states that model architecture has a significant impact on adversarial examples’ efficacy. The data 
collected includes six runs of three models, both with and without an attack. Within the data, every frame passed from 
the simulator to the driving model was collected and saved. Additionally, values passed back from the simulator 
describing the car’s location in relation to the track were also collected. Finally, if an adversarial attack was generated 
for a frame, both the adversarial image and the original image were saved. The first of these data points is the position 
of the vehicle within the virtual environment. The position was collected to assist in communicating the differences 
in the vehicle’s path between runs and models.  

Figure 1 clearly shows the increased variance in the way the vehicle moves for the ResNet model. The at-
tacked run (left graph) shows wider turns and an overall increase of visual deviation from the non-attacked runs. 
ResNet depicted the most difference in position between runs. While the position of the vehicle during runs helps us 
visualize the difference between a normal and attacked run, it is not helpful in quantifying how each model architecture 
is impacted by adversarial examples. 

 
Fig. 1. Depicts the position values of the ResNet model runs with and without attacks. 

 
 

 
 
Fig. 2. Above is the original image. Below is an example of an adversarial example created for the Dave-2 architecture. 
The difference between the two images is the addition of an adversarial pattern in the lower image. 
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Image Norm 
 
Another data point calculated from the data recorded in the runs is the average image norm. This value is a measure 
of how much each adversarial image changes in relation to its original image. Fig 2 shows a sample of adversarial and 
original images. Image norm is calculated by subtracting the adversarial image’s pixel values for red, green, and blue 
from the original images, squaring the difference, summing the squared difference across the entire image, and then 
taking the square root. This value measures the difference in each adversarial image holistically. Since all of the 
settings for the creation of the adversarial examples are constants between each run, we can assume that the reason 
for the change in average image norm is due to the varying model architecture. A larger image norm also means that 
there is a comparatively greater difference between the attacked and the original image. 
 
Table 1: Average Image Norm Between Model Types 

 
Average Change in Steering Angle 
 
This data point shows on average how much an adversarial attack changes the steering angle for each model. It is 
calculated by taking the steering angle from the frame before the attack (1/20th of a second before) and setting that as 
the expected angle. Then we subtract the adversarial steering angle from the expected angle and average overall frames 
with attacks. Between this value and the image norm, there is a pattern emerging where the ResNet model compara-
tively has higher values, followed by Dave-2. This means that these models are more susceptible to adversarial input 
and that adversarial examples cause a greater impact on their ability to drive the virtual vehicle. 
 
Table 2: Average Change in Steering Angle Between Model Types 

Model Dave-2 VGG ResNet 
Average Change in Steer-
ing Angle 

0.09401 0.0457 1.08224 

 
Attack Success Rate 
 
The attack success rate is a measure of how many attacks out of the total were able to change the expected steering 
angle by more than 5%. This rate was computed by taking the angle from the frame directly in front of an attack, 
setting it as the expected angle, and comparing it to the model’s predicted angle on an adversarial image. The threshold 
of 5% was chosen as a measure of a successful attack because any less could potentially be attributed to variance 
within the machine learning model’s training. Additionally, 5% is easily seen to have a large impact on the heading 
of the virtual vehicle. This data point furthers the emerging trend of adversarial susceptibility between the models. 
 
Table 3: Attack Success Rates Between Model Types 

 
 
 

Model Dave-2 VGG ResNet 
Average Image Norm 1684 1451 1973 

Model Dave-2 VGG ResNet 
Attack Success Rate 25.8% 11.7% 97.6% 
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Cross-Track Error 
 
The vehicle’s location was quantified by a variable returned by the simulator named cross-track error (CTE). The data 
used to train the models had a mean cross-track error of 0.132 with a standard deviation of 1.04. These values mean 
that there is a slight favor towards the right of the centerline throughout the data from the human expert, and there is 
a limited deviation from that position. Each run, the models with and without attacks also collected CTE values; these 
values will be compared in the next section. These results as a whole move towards answering the research question 
and finding if there is a difference in the impact of adversarial examples caused by model architecture. 
 

Analysis 
 
The hypothesis of model architecture having a significant impact on adversarial examples’ efficacy is proven to be 
accurate through the data collected. Although there is no quantitative value to show the immediate efficacy of adver-
sarial examples against different model architectures, we can achieve a conclusion by combining the data from the 
statistical tests and quantitative values. The first way to show a significant change in the cross-track error (CTE) was 
a statistical F-test between runs where the model was both under attack and not under attack. An F-test was chosen 
because each set of collected data will have a similar mean and only standard deviation/variance changes between 
each run by nature of the cross-track error. Before running this test, the collected CTE data distributions were com-
pared to a normal distribution using a QQ plot to ensure the F-test can be run. All datasets met the conditions necessary 
for the statistical test. The F-test allows for accepting that the adversarial attack firstly causes a statistically significant 
difference on the cross-track error and secondly cements that cross-track error can be used as a method to measure the 
difference between the runs. This round of F-tests compares the CTE values between attacked and not attacked runs 
of each model. The p-value in this test shows the certainty in which the attack is causing a difference in the cross-
track error. Since all of the p-values are under the threshold of 0.05, there is a statistically significant difference be-
tween the runs with and without an adversarial attack. 
 
Table 4: F-Test between runs with and without adversarial attacks 

Model Dave-2 VGG ResNet 
F-value 1.041 1.089 1.109 
P-value 0.02334 1.544*10-5 2.411*10-7 

 
A second round of F-test is then run between the attacked runs of each model architecture to determine if 

there is a difference in CTE because of the change in model architecture. Since all p-values are less than 0.05 and the 
f-values are above 1 in each of the tests comparing the attacked runs from each model architecture, we can conclude 
that their model architecture causes a statistically significant difference in models’ susceptibility to adversarial attacks. 
 
Table 5: F-test between models with attacked runs 

Comparison Dave-2 vs. VGG Dave-2 vs. ResNet VGG vs. ResNet 
F-value 1.550 1.755 2.720 
p-value 1.110x10-16 1.110x10-16 1.110x10-16 

 
If we order the models in terms of how well they protect against attacks by using the differences proved by 

the second f-test and the average adversarial change in steering angle, we get VGG, Dave-2, and then ResNet. Essen-
tially, the model based on the VGG architecture protects against adversarial attacks better than the other two model 
architectures and so on. This ordering of tested model architectures shows that in the experiment, shallower models 
with a greater number of filters on each layer are better protected against adversarial input. 
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Limitations 
 
One limitation of my research is that this type of white-box attack is unlikely to happen in the real world. A real-world 
adversarial attack might only have access to the camera stream, for example. In contrast, in my research, the attacking 
algorithm had complete control over the camera stream, the model architecture, and the model weights to generate an 
adversarial image. Another limitation is that the tested models were end-to-end; in real-world systems, self-driving 
stacks are usually complex amalgamations of hardcoded algorithms and trained machine learning networks.  

The adversarial examples used in this research were not created to be imperceptible to the human eye. For 
attacks in the real world, the adversarial images must not only evade detection from human supervisors but also ad-
versarial image detection software. This means that adversarial examples against actual vehicles might have less of 
an impact on the steering angle; however, this cannot be known for sure. 

Most attacks on software in the real world tend to bypass complicated machine learning systems by exploiting 
vulnerabilities in the code surrounding these systems [18]. This means that simply making a secure machine learning 
system is not sufficient; the code and software around the machine learning algorithms must also be incredibly secure. 
Although this research proves that there are potentially stronger model architectures to protect against adversarial 
input, there must still be sound software surrounding machine learning systems. 
 
Implications 
 
Although this research was focused on applications in self-driving, any situation where machine learning models can 
be applied should have a similar impact of model architecture on adversarial examples’ effectiveness. This is due to 
the innate properties of machine learning models being able to generalize well to various tasks and applications [5]. 
Additionally, this study proves that there are ways of improving model architecture to better protect against adversarial 
examples. This property can apply to all applications of machine learning in that programmers and researchers can 
optimize their models to better protect against adversarial examples. 

Although model architectures can inherently create problems in susceptibility to adversarial examples, they 
are usually kept constant when companies try to protect against adversarial examples. This is because model architec-
tures have specific impacts on how the model behaves. Although this was minimally apparent in my research, chang-
ing model architecture to protect against adversarial examples is not always feasible or possible. 

Overall, my research has shown that changing the architecture of end-to-end models changes the impact of 
adversarial examples in self-driving applications. However, since machine learning generalizes to many fields while 
keeping properties across them, architecture will most likely change the impact of adversarial examples in various 
other applications as well. 
 
Next Steps 
 
The primary direction for future research must be towards identifying which filters, layers, and structures impact a 
specific model’s susceptibility to adversarial examples the most. This will allow researchers and programmers to build 
secure machine learning systems for many applications and ensure the safety of users and companies involved. An-
other area of future research is why specific structures cause increased susceptibility to adversarial input. If this is 
answered, we could be able to create the next generation of secure machine learning systems. 
 

Conclusion 
 
It has been proven that model architecture does have a statistically significant impact on the effectiveness of adver-
sarial examples. This study begins the research needed to completely answer the question of how adversarial examples 
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are impacted by model architecture. Future research must look directly into what amount of filters, layers, and struc-
tures cause differences in the impact of adversarial examples. The implications for this discovery are far-reaching as 
companies and researchers not only need to design their models to accurately function on a given task but also design 
machine learning systems for security against malicious attacks. 
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Appendix A: Detailed Model Information 
Training constants 

 
Model Architectures 
Dave-2 Model Architecture 
 
Layer (type)   Output Shape  Param # 
=============================================================== 
img_in (InputLayer)  [(None, 66, 200, 3)] 0 
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_________________________________________________________________ 
batch_normalization   (None, 66, 200, 3) 12 
_________________________________________________________________ 
conv2d_1 (Conv2D)  (None, 31, 98, 24) 1824 
_________________________________________________________________ 
dropout (Dropout)  (None, 31, 98, 24) 0 
_________________________________________________________________ 
conv2d_2 (Conv2D)  (None, 14, 47, 36) 21636 
_________________________________________________________________ 
dropout_1 (Dropout)  (None, 14, 47, 36) 0 
_________________________________________________________________ 
conv2d_3 (Conv2D)  (None, 5, 22, 48) 43248 
_________________________________________________________________ 
dropout_2 (Dropout)  (None, 5, 22, 48) 0 
_________________________________________________________________ 
conv2d_4 (Conv2D)  (None, 3, 20, 64) 27712 
_________________________________________________________________ 
dropout_3 (Dropout)  (None, 3, 20, 64) 0 
_________________________________________________________________ 
conv2d_5 (Conv2D)  (None, 1, 18, 64) 36928 
_________________________________________________________________ 
dropout_4 (Dropout)  (None, 1, 18, 64) 0 
_________________________________________________________________ 
flattened (Flatten)  (None, 1152)  0 
_________________________________________________________________ 
dense (Dense)   (None, 100)  115300 
_________________________________________________________________ 
dropout_5 (Dropout)  (None, 100)  0 
_________________________________________________________________ 
dense_1 (Dense)  (None, 50)  5050 
_________________________________________________________________ 
dropout_6 (Dropout)  (None, 50)  0 
_________________________________________________________________ 
angle_out (Dense)  (None, 1)  51 
=============================================================== 
 
Total params: 251,761 
Trainable params: 251,755 
Non-trainable params: 6 
 
VGG Model Architecture 
Layer (type)   Output Shape  Param # 
=============================================================== 
img_in (InputLayer)  [(None, 66, 200, 3)] 0 
_________________________________________________________________ 
conv2d_1 (Conv2D)  (None, 66, 200, 32) 896 
_________________________________________________________________ 
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max_pooling2d  (None, 33, 100, 32) 0 
_________________________________________________________________ 
conv2d_2 (Conv2D)  (None, 33, 100, 64) 18496 
_________________________________________________________________ 
max_pooling2d_1  (None, 16, 50, 64) 0 
_________________________________________________________________ 
conv2d_3 (Conv2D)  (None, 16, 50, 128) 73856 
_________________________________________________________________ 
max_pooling2d_2  (None, 8, 25, 128) 0 
_________________________________________________________________ 
conv2d_4 (Conv2D)  (None, 6, 23, 128) 147584 
_________________________________________________________________ 
max_pooling2d_3  (None, 3, 11, 128) 0 
_________________________________________________________________ 
dropout (Dropout)  (None, 3, 11, 128) 0 
_________________________________________________________________ 
flattened (Flatten)  (None, 4224)  0 
_________________________________________________________________ 
dense (Dense)   (None, 75)  316875 
_________________________________________________________________ 
dropout_1 (Dropout)  (None, 75)  0 
_________________________________________________________________ 
dense_1 (Dense)  (None, 50)  3800 
_________________________________________________________________ 
dropout_2 (Dropout)  (None, 50)  0 
_________________________________________________________________ 
angle_out (Dense)  (None, 1)  51 
=============================================================== 
 
Total params: 561,558 
Trainable params: 561,558 
Non-trainable params: 0 
 
ResNet Model Architecture 
 
Excluded due to length (67 layers deep with residual passages increasing complexity) 
 
Total params: 496,589 
Trainable params: 494,823 
Non-trainable params: 1,766 
 
Full code can be accessed at https://bit.ly/3yltfCI 
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