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ABSTRACT 
 
The present investigation shows a kinematic analysis of Baumgartner’s stratospheric jump, based on a scientific report 
by Red Bull. The modeling was carried out using the different forces that intervened in the event (velocity, accelera-
tion, etc.), making it possible to generate a mathematical model capable of extrapolating data and allowing us a better 
appreciation of such scientific achievement. All the mathematical exploration has been carried out with ten decimal 
places; however, they will be rounded to four in writing. The action plan was based on obtaining the velocities by 
placing points on a velocity model belonging to an approximate graph of a Red Bull scientific report, which was 
put into the GeoGebra Classic 5 program to find the velocities. After this, we proceeded to find the accelerations and 
the formula of the function that models them. Finally, this formula was integrated to acquire the mathematical model 
of the velocities.  
 

Introduction 
 
On October 14, 2012, the Austrian Felix Baumgartner became the first man to break the sound barrier, having jumped 
into the void from a height of more than 39,000 meters without the support of any vehicle or type of propellant. An 
achievement that years before we might have considered impossible. In a Red Bull scientific report on Felix Baum-
gartner's stratospheric jump, they mentioned that the maximum vertical velocity occurs in 50 seconds of free fall, 
reaching a velocity of 377.1 m/s. However, according to what has been studied, the velocity is found by multiplying 
the time by the intensity of the earth's gravitational field (9.81 m/s2), obtaining a value in the second 50 of 490.5 m/s, 
a value unequal to the one mentioned previously. Consequently, this would not be a uniformly accelerated rectilinear 
motion.  

These events are the ones that give rise to questions such as: How could the velocities and accelerations 
experienced by Felix be modeled? Would a function that models the accelerations and velocities experienced by 
Baumgartner be fluid or disjointed? Interrogations like these lead us to obtain the functions that model all the veloci-
ties1 and accelerations2 acting on the Austrian paratrooper throughout the movement.  It should be noted that different 
mathematical elements will intervene, such as functions by parts, derivatives, integrals, and analysis of functions; 
therefore, I relied on the Red Bull scientific report3 to carry out the study, giving me the velocities experi-
enced throughout the fall. In addition, using the support of GeoGebra, I was able to place the figure on the scale 
as proposed in the image.  

 
1 It is a physical magnitude that relates the position of an object or living being with time 
2 It is a vector derived quantity that relates the variation of velocity with time 
3 “Red Bull Stratos Summary Report”, Red Bull (February 4, 2020) Accessed on August 24, 2020.Available at: 
https://issuu.com/redbullstratos/docs/red_bull_stratos_summit_report_final_050213 
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Figure 1. Official Red Bull image adjusted on a GeoGebra Cartesian plane showing some forces that intervened in 
Felix Baumgartner's stratospheric jump 
 

Methodology 
 
As a first step, I obtained data from Figure 1 by placing a series of points in order (see Figure 2). In this way, we 
can bring the velocities experienced by Baumgartner over time.  
 

 
 
Figure 2. Graph taken from Red Bull and adjusted on a GeoGebra Cartesian plane that models the velocities experi-
enced by Felix Baumgartner in the stratospheric jump. 
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Using these data, we can obtain a model through regression with all velocities. However, by proceeding in 
this way, the formula for the velocity function is achieved but disjointed. Therefore, when deriving the velocity, 
the acceleration came out the same way. When this problem arose, I decided to find a mathematical model for the ac-
celerations as the first specific objective. 

This model will be approximate, since I will obtain it through the average rate of change4, which I will 
discover using the following formula: 
𝑑𝑑𝑉𝑉
𝑑𝑑𝑡𝑡
≈ ∆𝑉𝑉

∆𝑡𝑡
=  𝑉𝑉2−𝑉𝑉1

𝑡𝑡2−𝑡𝑡1
   ;𝑉𝑉: 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 |  𝑡𝑡: 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

The data I obtained using this technique gives me average change ratios that are approximately equivalent to 
the derivative existing at the midpoint of that time interval. Added to this, the average rate of change of a function 
gives us an idea of how much it decreases or increases in a given interval. The average variation rate would be the ac-
celeration as a velocity function since it tells us if the velocity increases or decreases depending on the time. However, 
to generate a scatter plot, we need the independent variable. This time, it will be the classmark, the midpoint of an in-
terval representing all the values. The use of the classmark is given for the calculation of some parameters. Therefore, 
this would come representing the X-axis.  
 
To determine the class marks, I used the following formula:  
 
𝑀𝑀𝑐𝑐 = 𝑡𝑡1+𝑡𝑡2

2
 ;𝑀𝑀𝑐𝑐:𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 | 𝑡𝑡: 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

After having the values of the accelerations and the class marks, I made a scatter diagram in GeoGebra.  
 

 
 
Figure 3. Scatter diagram made in GeoGebra that shows the accelerations experienced by Felix Baumgartner in the 
stratospheric jump 
 

As we can see in figure 3, the acceleration has a defined form; however, it is difficult to adapt to a single 
function. Consequently, it would be helpful to model it in parts, dividing the acceleration into three mathematical 
models. We can observe three abrupt changes, one between 17 and 21 seconds and the other around 60 seconds. In 
addition, they will be chosen from the best correlation coefficient that presents the best fit. It is worth mentioning that 
the first model was not counted in the previous figure because, at first glance, its integral (velocity) is observed that it 
is linear, with a slope of 9.875, as can be corroborated in Figure 2. Therefore, when it is derived, I will also get a linear 
function with a slope of 0. Thus, the first mathematical model of acceleration has the following formula:  
 

𝐴𝐴1(𝑡𝑡) = 9.875 
For the second mathematical model, I made a two-variable regression from 𝑡𝑡 =  0.05 to  𝑡𝑡 = 60.4866, since 

as previously mentioned, around second 60, there is a noticeable change in acceleration; the accelerations start to 

 
4 It is the slope of a line that crosses the coordinates of an interval 

Volume 10 Issue 3 (2021) 

ISSN: 2167-1907 www.JSR.org 3



   
 

  
 

decrease and then begin to increase sharply. It should be noted that I incorporated the points of the first mathematical 
model in such a way it would fit better. 
 

 
 
Figure 4. Scatter diagram made in GeoGebra showing the Felix Baumgartner accelerations in the stratospheric jump 
from second 0.05 to second 60.4866 
 

Figure 4 is being modeled by a function of degree 6, chosen due to the value of its coefficient of determination 
(𝑅𝑅2  =  0.9794) since it is the one that best suits the situation and covers the most significant number of values. This 
is defined with the following formula: 
 

𝐴𝐴3(𝑡𝑡) = −83 × 10−10𝑡𝑡6 + 1179 × 10−9𝑡𝑡5 − 0.0001𝑡𝑡4 + 0.0012𝑡𝑡3 − 0.0098𝑡𝑡2 + 0.0353𝑡𝑡 + 9.839 
 

In the case of the third mathematical model, we have to consider the notion of terminal velocity5, which takes 
place when the force of gravity6 equates to the force of air resistance7, that is, the velocity becomes constant, being 
represented by a horizontal asymptote. After searching, I found data that the terminal velocity, in the Felix 
Baumgartner stratospheric jump was 175/3 (m /s2)8. 

However, we are not working with velocity in this part but with acceleration. However, this data helps us to 
establish the mathematical model to use, in this case, a potential function, which given the circumstances, should tend 
to 0, but why not a rational or exponential function? A rational function could not be since it contains a vertical and 
horizontal asymptote. On this occasion, the vertical asymptote would get in my way and make me too complicated. 
On the other hand, exponential could be. However, for the technique I wanted to use, it was better to use a potential, 
which was also ideally suited to the given circumstances. 

If the velocity graph is represented by a horizontal asymptote of 175/3, the acceleration graph will have to 
be represented by a horizontal asymptote of 0 so that the velocity tends to be constant. This third mathematical model 
would start from A3 ended and finish at 180 seconds (Red Bull graph limit). To find the function's formula, a natu-
ral logarithm was applied to the class mark and the accelerations, which acquired a linear function format when one 
superimposes a natural logarithm to a potential function, with which it is easier to work. However, in second 60.4866 

 
5 It is the constant velocity achieved by an object or living being that falls through a resistant medium and in which a 
constant force act. 
6 It is a force generated by objects with mass to attract each other. 
7 It is the force that opposes the force of gravity when the body moves through the air. 
8 Naukas, “Baumgartner's jump, step by step” by Arturo Quirantes. Accessed August 4, 2020. Available at: 
https://naukas.com/2012/10/21/el-salto-baumgartner-paso-a-
paso/#:~:text=Seg%C3%BAn%20esta%20gr%C3%A1fica%2C%20Baumgartner% 20recorri% C3% B3, from% 20 
about% 20 210% 20km% 2Fh. 
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and onwards, the acceleration was negative, so the negative natural logarithm was applied to the acceleration 
(ln[−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ó𝑛𝑛]).With these new values, we plotted a scatter plot. 
 

 
 
Figure 5. Scatter diagram made in GeoGebra showing the Felix Baumgartner accelerations in the stratospheric jump 
influenced by a ln(−𝑥𝑥) from second 60.4866 to second 180. 
 
Using the linear function, we can reverse the process because, in reality, the discovered formula would be: 

𝑙𝑙𝑙𝑙�𝐴𝐴5(𝑡𝑡)� = −3.2431 𝑙𝑙𝑙𝑙(𝑡𝑡) + 15.6038 
𝐴𝐴5(𝑡𝑡) = 𝑒𝑒−3.2431ln (𝑡𝑡) + 𝑒𝑒15.6038 
𝐴𝐴5(𝑡𝑡) = 𝑒𝑒−3.2431 ln(𝑡𝑡)+15.6038 

Then, it would have to be reflected with the x-axis so that it fits with the function A3, obtaining the following: 
𝐴𝐴5(𝑡𝑡) = −𝑒𝑒−3.2431 ln(𝑡𝑡)+15.6038 
𝐴𝐴5(𝑡𝑡) = −𝑒𝑒15.6038𝑡𝑡−3.2431 

𝐴𝐴5(𝑡𝑡) = −5979215.9184𝑡𝑡−3.2431 
After having the three mathematical models, I continued with their union: 
 
𝐴𝐴(𝑡𝑡)

= �
𝐴𝐴1(𝑡𝑡) = 9.875 ∶ 0 ≤ 𝑡𝑡 < 21.15

𝐴𝐴3(𝑡𝑡) = −83 × 10−10𝑡𝑡6 + 1179 × 10−9𝑡𝑡5 − 0.0001𝑡𝑡4 + 0.0012𝑡𝑡3 − 0.0098𝑡𝑡2 + 0.0353𝑡𝑡 + 9.839 ∶ 21.15 ≤ 𝑡𝑡 < 60.4866
𝐴𝐴5(𝑡𝑡) = −5979215.9184𝑡𝑡−3.2431 ∶ 60.4866 ≤ 𝑡𝑡 ≤ 180

  

 

 
 
 
Figure 6. Modeling of the acceleration, carried out in GeoGebra, experienced by Felix Baumgartner in the strato-
spheric jump up to 180 seconds. 
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As can be seen in figure 6, the acceleration model is disconnected. After presenting this problem, I decided 
to unite the parts that are not connected through functions that are appropriate to the situation, and the use of these 
makes sense. Therefore, to join the function A1 with A3, I used the polynomial interpolation technique using a cubic 
function, and for the coupling of the function A3 with A5, the same, but instead, I used a fourth-degree function. I 
determined that the cubic function would start from the second 17.3 to 18.3, since being disjointed in the same second, 
I will use from half a second before and half a second after. Therefore, to find the formula of the function, I made a 
system of equations, considering the structure of a cubic function: 

𝑓𝑓(𝑡𝑡) = 𝑔𝑔𝑡𝑡3 + ℎ𝑡𝑡2 + 𝑖𝑖𝑖𝑖 + 𝑗𝑗 
The coordinate (17.3, 9.875) belonged to the function A1, which means that if we wanted to join A1 with A3 through 
a cubic function, by replacing t by 17.3, we should obtain 9.875, obtaining the following as the first equation: 

9.875 = 𝑔𝑔(17.3)3 + ℎ(17.3)2 + 𝑖𝑖(17.3) + 𝑗𝑗 
Then, by replacing t by 18.3 in the cubic function, we should obtain A3 (18.3), acquiring the following formula as the 
second: 

9.7653 = 𝑔𝑔(18.3)3 + ℎ(18.3)2 + 𝑖𝑖(18.3) + 𝑗𝑗 
As I needed two more equations, I decided to derive the functions A1 and A3, thus arriving at the force of Jolt9, better 
known as jerk. Consequently, when deriving the functions A1 and A3, I obtained the following: 
 

𝐽𝐽1(𝑡𝑡) = 0 
𝐽𝐽3(𝑡𝑡) = −498 × 10−10𝑡𝑡5 + 58949 × 10−10𝑡𝑡4 − 0.0002𝑡𝑡3 + 0.0035𝑡𝑡2 − 0.0196𝑡𝑡 + 0.0353 

In addition, I took into account the structure of the derivative of a cubic function. 
 

f ′(t) = 3gt2 + 2ht + i 
Finding the third equation by replacing t with 17.3, it should come out 0 since 17.3 belongs to the function A1, the 
integral of J1. 
 
Obtaining the following as the third equation: 

0 = 3𝑔𝑔(17.3)2 + 2ℎ(17.3) + 𝑖𝑖 
Finally, to find the fourth equation, by replacing t with 18.3, J3 (18.3) would have to come out. Obtaining as the fourth 
equation the following: 

−0.0531 = 3𝑔𝑔(18.3)2 + 2ℎ(18.3) + 𝑖𝑖 
After this, I obtained the following system of equations: 

⎩
⎪
⎨

⎪
⎧ 9.875 = g(17.3)3 + h(17.3)2 + i(17.3) + j

9.7653 = g(18.3)3 + h(18.3)2 + i(18.3) + j
0 = 3g(17.3)2 + 2h(17.3) + i

−0.0531 = 3g(18.3)2 + 2h(18.3) + +i

 

This was solved using the GeoGebra program, finding the values of the variables: 
 

𝑔𝑔 = 0.1663 ; ℎ = −8.9042 ; 𝑖𝑖 = 158.8162 ; 𝑗𝑗 = −933.4923 
Having the values, they were replaced, obtaining the cubic function that joins A1 with A3, denoting it with the name 
of A2. 

𝐴𝐴2(𝑡𝑡) = 0.1663𝑡𝑡3 − 8.9042𝑡𝑡2 + 158.8162𝑡𝑡 − 933.4923 ;  17.3 ≤ 𝑡𝑡 < 18.3 
As a next step, I needed to find the fourth-degree function that connects A3 with A5. A quartic function was chosen 
because, unlike A2, there are three points of interest, the two points at the end of the connection and a minimum point 
experienced approximately in the second 60.5, as shown in figure 3. Being a fourth-degree function, five equations 
will be needed to obtain the values of all the variables. 

 
9 It is the variation of the acceleration with respect to time; the derivative of the acceleration. 
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I determined that the function is from t = 60 to t = 61 since the function A3 and A5 were unconnected in the second 
60.4866, approximately 60.5, so I also used a transition second between one and the other function, half a second 
before and a half a second later. Also, remember the structure of a fourth-degree function: 

𝑓𝑓(𝑡𝑡) = 𝑏𝑏𝑡𝑡4 + 𝑐𝑐𝑡𝑡3 + 𝑑𝑑𝑡𝑡2 + 𝑒𝑒𝑒𝑒 + 𝑓𝑓 
The point with t = 60 belonged to the function A3; this point would also form part of the fourth-degree function, which 
means that if we replaced t by 60, we had to obtain A3 (60). Getting the following equation: 

−11.7461 = 𝑏𝑏(60)4 + 𝑐𝑐(60)3 + 𝑑𝑑(60)2 + 𝑒𝑒(60) + 𝑓𝑓 
The point with t = 61 belonged to the function A5, so if we replaced t by 61, we had to obtain A5 (61). Bringing the 
following equation: 

−9.6980 = 𝑏𝑏(61)4 + 𝑐𝑐(61)3 + 𝑑𝑑(61)2 + 𝑒𝑒(61) + 𝑓𝑓 
The point t = 60.5 also belonged to the function A5, so if we replaced t by 60.5, we had to obtain A5 (60.5). Receiving 
the following equation: 

−12.8742 = 𝑏𝑏(60.5)4 + 𝑐𝑐(60.5)3 + 𝑑𝑑(60.5)2 + 𝑒𝑒(60.5) + 𝑓𝑓 
Having three equations and missing two, I decided to go back to the topic of Jolts. However, in this case, I only needed 
to bypass A3 and A5. We must take into account the structure of a fourth-degree function that has been derived: 

𝑓𝑓′(𝑡𝑡) = 4𝑏𝑏𝑡𝑡3 + 3𝑐𝑐𝑡𝑡2 + 2𝑑𝑑𝑑𝑑 + 𝑒𝑒 
 
By deriving A3 and A5, I got the following: 
 

𝐽𝐽3(𝑡𝑡) = −498 × 10−10𝑡𝑡5 + 58949 × 10−10𝑡𝑡4 − 0.0002𝑡𝑡3 + 0.0035𝑡𝑡2 − 0.0196𝑡𝑡 + 0.0353 

𝐽𝐽5(𝑡𝑡) =
121194969656019

6250000
×

𝑡𝑡

𝑡𝑡4(𝑡𝑡
1

10000)9999(𝑡𝑡
1
625)152

  ;   60 ≤ 𝑡𝑡 < 61 

To get the fourth equation by replacing t with 60 in function J3, I get J3 (60). Getting as the fourth equation: 
−2.1797 = 4𝑏𝑏(60)3 + 3𝑐𝑐(60)2 + 2𝑑𝑑(60) + 𝑒𝑒 

To obtain the fifth equation, we replace t by 61 in function J5, so I get J5 (61). Getting as the fifth equation: 
0.5156 = 4𝑏𝑏(61)3 + 3𝑐𝑐(61)1 + 2𝑑𝑑(61) + 𝑒𝑒 

After this, the following system of equations was obtained: 

⎩
⎪
⎨

⎪
⎧−11.7461 = 𝑏𝑏(60)4 + 𝑐𝑐(60)3 + 𝑑𝑑(60)2 + 𝑒𝑒(60) + 𝑓𝑓              
−9.6980 = 𝑏𝑏(61)4 + 𝑐𝑐(61)3 + 𝑑𝑑(61)2 + 𝑒𝑒(61) + 𝑓𝑓            
−12.8742 = 𝑏𝑏(60.5)4 + 𝑐𝑐(60.5)3 + 𝑑𝑑(60.5)2 + 𝑒𝑒(60.5) + 𝑓𝑓
−2.1797 = 4𝑏𝑏(60)3 + 3𝑐𝑐(60)2 + 2𝑑𝑑(60) + 𝑒𝑒                       

0.5156 = 4𝑏𝑏(61)3 + 3𝑐𝑐(61)1 + 2𝑑𝑑(61) + 𝑒𝑒                   

 

Which was solved with the GeoGebra program, obtaining the values of the variables: 
 

𝑏𝑏 = −29.0429 ; 𝑐𝑐 = 7022.6211 ;𝑑𝑑 = −636764.2426 ; 𝑒𝑒 = 25660463.46 ; 𝑓𝑓 = −387766737.4 
By having the values of the variables, they were replaced in the structure of a fourth-degree function that joins A3 with 
A5, denoting it with the name of A4. 

𝐴𝐴4(𝑡𝑡) = −29.0429𝑡𝑡4 + 7022.6211𝑡𝑡3 − 636764.2426𝑡𝑡2 + 25660463.46𝑡𝑡 − 387766737.4 
Once all the mathematical models of the accelerations experienced by Felix Baumgartner in the stratospheric jump 
had been obtained, we proceeded to join them. In this way, a "general" acceleration function would be received: 

𝐴𝐴(𝑡𝑡)

=

⎩
⎪
⎨

⎪
⎧ 9.875                                ∶         0 ≤ 𝑡𝑡 < 17.3

0.1663𝑡𝑡3 − 8.9042𝑡𝑡2 + 158.8162𝑡𝑡 − 933.4923                ∶     17.3 ≤ 𝑡𝑡 < 18.3 
−83 × 10−10𝑡𝑡6 + 1179 × 10−9𝑡𝑡5 − 0.0001𝑡𝑡4 + 0.0012𝑡𝑡3 − 0.0098𝑡𝑡2 + 0.0353𝑡𝑡 + 9.839 ∶         18.3 ≤ 𝑡𝑡 < 60
−29.0429𝑡𝑡4 + 7022.6211𝑡𝑡3 − 636764.2426𝑡𝑡2 + 25660463.46𝑡𝑡 − 387766737.4            ∶          60 ≤ 𝑡𝑡 < 61 

−5979215.9184𝑡𝑡−3.2431               ∶          61 ≤ 𝑡𝑡 ≤ 180 

 

After getting it, we moved to graph it. 
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Figure 7. Modeling of the accelerations, carried out in GeoGebra, experienced by Felix Baumgartner in the strato-
spheric jump up to 180 seconds. 
 

In figure 7, it can be observed all the accelerations throughout the movement. On the other hand, the abrupt 
change in the second 60.5 is highlighted. Likewise, we can notice the horizontal asymptote of the function A5 (𝑦𝑦 =
0), since as time passes, Baumgartner gets closer to reaching its terminal velocity (175/3 m/s). It is worth mentioning 
that linear acceleration is observed at the beginning of the jump until 17.3 seconds; in that period, it is highlighted that 
the acceleration would be the intensity of the earth’s gravitational field (9.875 m/s), that is, free fall. 
As a second step, we will integrate A(t) to find the function that models the velocities. However, it has to be integrated 
into parts. In addition, it must be taken into account that when integrating a function, its independent variable will 
become 0, so it will be necessary to move the functions so that they fit correctly. 
 
The first step would be to integrate A1. When intersecting the coordinate (0,0), it is not necessary for us to manipulate 
it, so the integral of this would be the first velocity model: 

𝐴𝐴1(𝑡𝑡) = 9.875 

� 9.875 𝑑𝑑𝑑𝑑 = 9.875𝑡𝑡 + 𝑐𝑐 

 
Given that 𝑉𝑉1(0) = 0,                             𝑉𝑉1(𝑡𝑡) = 9.875𝑡𝑡  ;   0 ≤ 𝑡𝑡 < 17.3 
The second step would be to integrate A2(t). In this way, we will find the indefinite integral. Likewise, we also have 
the data that 𝑉𝑉1(17.3) =  𝑉𝑉2(17.3); therefore, the independent value (c) of the integrated function can be found, thus 
fulfilling the equality as mentioned above. 

𝐴𝐴2(𝑡𝑡) = 0.1663𝑡𝑡3 − 8.9042𝑡𝑡2 + 158.8162𝑡𝑡 − 933.4923 

𝑉𝑉2(𝑡𝑡) = � 0.1663𝑡𝑡3 − 8.9042𝑡𝑡2 + 158.8162𝑡𝑡 − 933.4923 𝑑𝑑𝑑𝑑 

𝑉𝑉2(𝑡𝑡) = 0.0416𝑡𝑡4 − 2.9681𝑡𝑡3 + 79.4081𝑡𝑡2 − 933.4923𝑡𝑡 + 𝑐𝑐 
Since 𝑉𝑉1(17.3) = 𝑉𝑉2(17.3) ,then we have: 

9.875(17.3) = 0.0416(17.3)4 − 2.9681(17.3)3 + 79.4081(17.3)2 − 933.4923(17.3) + 𝑐𝑐 
Therefore: 

𝑉𝑉2(𝑡𝑡) = 0.0416𝑡𝑡4 − 2.9681𝑡𝑡3 + 79.4081𝑡𝑡2 − 933.4923𝑡𝑡 + 4195.8864 ; 17.3 ≤ 𝑡𝑡 < 18.3 
The third step would be to integrate A3(t), just like A2(t). On this occasion, we have the data that 𝑉𝑉2(18.3) = 𝑉𝑉3(18.3). 
Therefore, we can obtain the value of c. 

𝐴𝐴3(𝑥𝑥) = −83 × 10−10𝑡𝑡6 + 1179 × 10−9𝑡𝑡5 − 0.0001𝑡𝑡4 + 0.0012𝑡𝑡3 − 0.0098𝑡𝑡2 + 0.0353𝑡𝑡 + 9.839 
∫−83 × 10−10𝑡𝑡6 + 1179 × 10−9𝑡𝑡5 − 0.0001𝑡𝑡4 + 0.0012𝑡𝑡3 − 0.0098𝑡𝑡2 + 0.0353𝑡𝑡 + 9.839𝑑𝑑𝑑𝑑 𝑒𝑒𝑒𝑒ue Vetenemos 
quealdad mencionadapendiente de la funcir acio largo del movimiento. 
8888888888888888888888888888888888888888 
𝑉𝑉3 = −12 × 10−10𝑡𝑡7 + 1965 × 10−10𝑡𝑡6 − 118483 × 10−10𝑡𝑡5 + 0.0003𝑡𝑡4 − 0.0033𝑡𝑡3 + 0.0177𝑡𝑡2 + 9.839𝑡𝑡 + 𝑐𝑐 
Given that 𝑉𝑉2(18.3) = 𝑉𝑉3(18.3) 
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181.48824 = −12 × 10−10𝑡𝑡7 + 1965 × 10−10𝑡𝑡6 − 118483 × 10−10𝑡𝑡5 + 0.0003𝑡𝑡4 − 0.0033𝑡𝑡3 + 0.0177𝑡𝑡2
+ 9.839𝑡𝑡 + 𝑐𝑐 

𝑐𝑐 = 0.0059 
Therefore: 
𝑉𝑉3(𝑡𝑡) = −12 × 10−10𝑡𝑡7 + 1965 × 10−10𝑡𝑡6 − 118483 × 10−10𝑡𝑡5 + 0.0003𝑡𝑡4 − 0.0033𝑡𝑡3 + 0.0177𝑡𝑡2 + 9.839𝑡𝑡

+ 0.0059;   18.3 ≤ 𝑡𝑡 < 60 
The fourth step would be to integrate A4(t). In this case, we have the data that 𝑉𝑉4(60) = 𝑉𝑉3(60) so, we can find the 
value of c 

𝐴𝐴4(𝑡𝑡) = −29.0429𝑡𝑡4 + 7022.6211𝑡𝑡3 − 636764.2426𝑡𝑡2 + 25660463.46𝑡𝑡 − 387766737.4 
∫−29.0429𝑡𝑡4 + 7022.6211𝑡𝑡3 − 636764.2426𝑡𝑡2 + 25660463.46𝑡𝑡 − 387766737.4 𝑑𝑑𝑑𝑑  

𝑉𝑉4(𝑡𝑡) = −5.8086𝑡𝑡5 + 1755.6553𝑡𝑡4 − 212254.7475𝑡𝑡3 + 12830231.7299𝑡𝑡2 − 387766737.3738𝑡𝑡 + 𝑐𝑐 
Given that 𝑉𝑉3(60) = 𝑉𝑉4(60): 

−5990.5002 = −5.8086(60)5 + 1755.6553(60)4 − 212254.7475(60)3 + 12830231.7299(60)2
− 387766737.3738(60) + 𝑐𝑐 

𝑐𝑐 = 4687655010.2998 
Therefore: 

𝑉𝑉𝑉𝑉𝑉𝑉4(𝑡𝑡) = −5.8086𝑡𝑡5 + 1755.6553𝑡𝑡4 − 212254.7475𝑡𝑡3 + 12830231.7299𝑡𝑡2 − 387766737.3738𝑡𝑡
+ 4687655010.2998 ;  60 ≤ 𝑡𝑡 < 61 

The fifth step would be to integrate A5. For this function, we have as data that 𝑉𝑉4(61) = 𝑉𝑉5(61) with the use of this 
data, we can obtain the value of c. 

A5(t) = −5979215.9184𝑡𝑡−3.2431 

�−5979215.9184𝑡𝑡−3.2431 𝑑𝑑𝑑𝑑 

𝑉𝑉5(𝑡𝑡) = 2665603.8154𝑡𝑡−2.2431 + 𝑐𝑐 
Given that 𝑉𝑉4(61) = 𝑉𝑉5(61): 

−16484.2229 = 2665603.8154(61)−2.2431 + 𝑐𝑐 
𝑐𝑐 = −16748.9303 

Therefore: 
𝑉𝑉5(𝑡𝑡) = 2665603.815𝑡𝑡−2.2431 − 16748.9303 ; 61 ≤ 𝑡𝑡 ≤ 180 

Once we had the five functions that model the velocities experienced by Felix Baumgartner, we proceeded to join 
them, converting them into a mathematical model of general velocity: 

𝑉𝑉(𝑡𝑡)

⎩
⎪
⎨

⎪
⎧

9.875𝑡𝑡  ;   0 ≤ 𝑡𝑡 < 17.3
0.0416𝑡𝑡4 − 2.9681𝑡𝑡3 + 79.4081𝑡𝑡2 − 933.4923𝑡𝑡 + 4195.8864 ; 17.3 ≤ 𝑡𝑡 < 18.3

−12 × 10−10𝑡𝑡7 + 1965 × 10−10𝑡𝑡6 − 118483 × 10−10𝑡𝑡5 + 0.0003𝑡𝑡4 − 0.0033𝑡𝑡3 + 0.0177𝑡𝑡2 + 9.839𝑡𝑡 + 0.0059;   18.3 ≤ 𝑡𝑡
−5.8086𝑡𝑡5 + 1755.6553𝑡𝑡4 − 212254.7475𝑡𝑡3 + 12830231.7299𝑡𝑡2 − 387766737.3738𝑡𝑡 + 4687655010.2998 ;  60 ≤ 𝑡𝑡 <

2665603.815𝑡𝑡−2.2431 − 16748.9303 ; 61 ≤ 𝑡𝑡 ≤ 180

 

The function V (t) was graphed. Obtaining the following: 

 
Figure 8. Modeling of velocities, carried out in GeoGebra, experienced by Felix Baumgartner in the stratospheric 
jump up to 180 seconds 
 

Employing the present mathematical model of velocity (Figure 8), we can obtain all the velocities throughout 
the movement that Felix Baumgartner experiences. In addition, a linear increase is observed since it is only affected 
by the intensity of the earth's gravitational field (9.875 m/s). Furthermore, no air resistance is present from second 0 

Volume 10 Issue 3 (2021) 

ISSN: 2167-1907 www.JSR.org 9



   
 

  
 

to second 17.3. On the other hand, as time passes, a horizontal asymptote belonging to the V5 function is observed; 
the velocity each time approaches the value of the terminal velocity 175/3 m/s. 
 

Conclusion 
 
In the present work, I managed to fulfill the research objective, which is to find mathematical models for the acceler-
ations and velocities experienced by Felix Baumgartner in the stratospheric jump. 

Throughout the work, I faced various difficulties, such as the acceleration being obtained in a disjointed way 
and, therefore, the velocity, justified by the fact that it is a leap out of the ordinary, as Felix Baumgartner ends up 
breaking what would become the sound barrier. In addition, various variables such as density, air resistance, para-
trooper posture, turbulence, etc., come into play in the movement. Likewise, this work is unique and complete since 
it allows us to put together different mathematical topics, linking them to possible solutions to the problems that arise. 
This exploration is of great importance in the current historical and global context, as it is a cinematic study of one of 
the most recognized skydiving jumps in the world. Studying velocities and accelerations is very common in the sci-
entific community, as these data initiate improvements and new projects.  

The mathematical fields present were: algebra and calculus, which were of utmost importance to achieve the 
objective of the work. It should be noted that this research also has a weakness, and that is that the Red Bull graph, as 
I mentioned at the beginning of the work, is approximate and not entirely accurate. However, the work also has 
strengths, as is an analysis of various sources that served to contrast data. In the case of limitations, one of these was 
the period; my work was based from the second 0 to the second 180. However, the stratospheric jump in total lasted 
"4 minutes and 36 seconds" Another limitation is the terminal velocity, which starts a debate, as the Red Bull page 
never mentions anything about it. Also, some sources even say that there was never a terminal velocity present. These 
limitations, in turn, give rise to extensions (improvements); one of these can be to carry out a kinematic study of the 
complete Felix Baumgartner jump (4 minutes and 36 seconds)10. Likewise, another extension could be to study the 
force of Jolt. On the other hand, it would also be interesting to do a similar job with the jump of Alan Eustace11. He 
beats Baumgartner's record jumping from the stratosphere with a height of 41,150 meters, although he does not exceed 
sound velocity 
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