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ABSTRACT 

The well-known Nautilus shell has been modeled extensively both by mathematicians and origamists. However, there 
is wide disagreement on the best-fitting mathematical model — partly because there is significant variability across 
different Nautilus Shells found in nature, and no single model can describe all of them well. Origami structures, how-
ever, have precise repeatable folding instructions, and do not exhibit such variability. Ironically, no known mathemat-
ical models exist for these structures. In this research, we mathematically model a prominent origami design, the Navel 
Shell by Tomoko Fuse, believed to be based on the Nautilus. We use first-principles geometric and trigonometric 
constructs for developing a non-smooth Geometric Model of the ideal origami spiral. We then search for the best-
fitting parametric smooth spiral approximation, by formulating the fitting problem as a minimization problem over 
four unknowns. We write a Python computer program for searching the space numerically. Our evaluations show that: 
(i) the Smooth spiral is an excellent fit for the Geometric Model; (ii) our models for Origami Navel Shell are different
from prior mathematical models for the Nautilus shell, but they come close to a recent model for a rare species of
Nautilus; (iii) the Geometric Model explains the outer edges of origami images quite well and helps identify construc-
tion errors in the inner edges; and (iv) the Smooth Model helps understand how well the ideal Navel Shell matches
different variants of the Nautilus species. We hope our research lays the foundation for further mathematical modeling
of origami structures.

Introduction 

Modeling of the shape of artifacts foun incorporated in nature is useful to scientists — shape modeling in the scientific 
world has already led to many discoveries and innovations [7][8][32][41]. For example, it can help scientists discover 
and understand biological processes [32]. Medical image processing technology can help doctors understand the nor-
mal shape of an organ, which can be useful for early diagnosis and treatment [41]. Another example includes sunflower 
centers, a product of millions of years of evolution, with an extremely efficient arrangement of seeds. Modeling these 
centers have helped scientists find extremely compact and efficient ways to model other objects [7]. 

One of the shapes that has generated keen interest in the mathematical world is the spiral, which is abundant 
in nature: galaxies, tornadoes, hurricanes, flowers, and shells [29]. Shells, in particular, have been studied for long, 
and mathematical models [44] and origami designs [29] have been developed for these. In particular, the well-known 
Nautilus shell has been widely studied because of its exquisite chambers and logarithmic spiral shape [25]. 

There have been many mathematical models proposed for the Nautilus shell. A few sources, including 
blogists, artists, and novelists, claim that the Nautilus is an example of a Golden Spiral [6][12][22][34][36], which is 
a well-known logarithmic spiral that grows by the Golden Ratio (φ ≈ 1.618) every 90°. However, most mathematicians 
disagree with this claim [11][13][14][15][19][20][23][26][27][28][35][39][40]. In general, while mathematicians 
agree that the Nautilus shell is a logarithmic spiral, they widely disagree on the type of logarithmic spiral.  Some claim 
that the growth rate of the Nautilus is different from the Golden Ratio, φ, while others claim that the angle of growth 
is different from that of a Golden Spiral. For example, [28] states that when a spiral grows by the ratio φ every 180° 
(instead of 90°), it fits Nautilus shells much better. This, however, is contradicted by others, including 
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[4][11][14][19][26][28][35]. We believe that one of the reasons for such wide disagreement among mathematical 
models is the variability across different Nautilus found in nature [28] — no two Nautilus shells are the same; so a 
model that fits one shell, may not fit another. Because of the variability, we wonder — is it even possible to create a 
single model that fits all Nautilus Shells? 

In contrast, several origami structures have also been designed to model the Nautilus Shell, which do have 
very precise repeatable folding instructions [23][44]. The preciseness of the instructions stands in stark contrast to the 
variability found among real Nautili. Unfortunately, to the best of our knowledge, the preciseness of the instructions 
has not been exploited by anyone before to come up with a mathematical model for origami structures of the Nautilus 
[19]. In this project, we fill this gap. 

Specifically, we pick the Origami Navel Shell designed by Tomoko Fuse [16], which is believed to be based 
on the Nautilus. Using a first principles approach, we mathematically model this origami structure. Our methodology 
relies on geometric modeling of the folding instructions, as well as curve-fitting to find the smooth spiral that best 
explains the ideally-constructed Origami Navel Shell. Our models help mathematically understand the shape of the 
Origami Navel Shell, as well as understand its relation to the Nautilus Shell. 
In the rest of this paper, we formulate our research question in Section 2, develop our geometric model for the Origami 
Navel Shell in Section 3, and a smooth spiral approximation in Section 4. We validate our models in Section 5, study 
their relation to the state of the art in Section 6, summarize our limitations and future directions in Section 7, and our 
conclusions in Section 8. Photo credits for all images included in the paper are listed just before the bibliography.  
 
Formulating The Research Question 
 
We initially attempted to find online images of already constructed Origami Navel Shells, and then tried to study what 
curve would fit them the best. We were motivated by several references, including [38][28][25][30][35], that stated 
that a logarithmic curve could fit the Nautilus Shell, although they disagree on the exact logarithmic curve. Our hope 
was that one of these models might explain an Origami Navel Shell well. 

 
Fig. 1: The same logarithmic spiral does not fit different images of Origami Navel Shells1 
 

After experimenting with several origami images and proposed models for a Nautilus Shell, however, we 
found that a spiral that fits one origami image well, throughout inner and outer curves, may not fit another well at all 
(see Figure 1). We believe that this disparity is due to two main factors: (i) the variability introduced due to human 
error when folding the spiral, and (ii) the distortion introduced by a non-orthogonal angle of photography and non-flat 
structure. First, every individual person has a slightly different (imprecise) way of folding the spiral even if we all 
tried to follow the same instructions – so the constructed structures would have small differences in them. Second, if 
the constructed origami structure is not well flattened onto a two-dimensional plane, and/or if the angle of photography 
is not perpendicular to such a plane, then the photograph will be a non-orthogonal two-dimensional projection of the 

 

1 The A and B labels in the images refer to photo credits, which are listed prior to bibliography. 
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origami spiral, which can lead to distortions. Based on this, we realized that photographs taken by humans of human-
made origami spirals will likely not be an accurate data source.  

However, the folding instructions for the origami spiral are precise and freely available – starting from a 
square, several successive folding instructions lead to the origami structure. We hypothesized that we could analyze 
the folds in an Origami Navel Shell, and then use first principles of geometry and trigonometry to derive what the side 
lengths and angles are supposed to be in a precisely constructed structure. If successful, this would allow us to con-
struct a geometric model of the ideal Origami Navel Shell. We could then fit a smooth spiral on to this geometric 
model, in order to find the spiral that best models the Origami Navel Shell. In the next two sections, we use this 
approach for developing our geometric and smooth models. 
 
Geometric Modeling 
 
Although we found photographs of several different types of origami models for the Nautilus Shell [43][44][23], the 
only one where instructions were readily available was the popular model by the prominent origamist, Tomoko Fuse 
[16][18][43]. Throughout this section, we use these instructions to derive our model of Fuse’s Origami Navel Shell.  

 
Fig. 2: Geometric modeling goal: derive {𝐿𝐿𝑖𝑖 ,𝜔𝜔𝑖𝑖} 
 
By examining Fuse’s finished Origami Navel Shell, we see that there are three features of the spiral that are determined 
by the folding instructions. These include the outer edge lengths, the angles between the outer edges, and the radial 
lines coming in from the outer edges. Unfortunately, these radial lines do not meet at a single point (unlike most 
mathematical spirals, where the radial lines meet at the center of the spiral) – therefore, it is not clear how useful they 
would be in relating the origami spiral to a mathematical spiral. So, for the purpose of developing our geometric 
model, we instead focus on the lengths of and angles between the outer spiral edges (Figure 2). We describe our 
methodology for modeling both of these below. 
 
The Outer Edge Lengths, 𝐿𝐿𝑖𝑖 
 
Fuse’s folding instructions first fold two sides of a square along a diagonal to create a kite shaped structure, as shown 
in Figure 3.2 The triangle ABC gets folded along CA to form ADC. The next series of steps involve creating horizontal 
creases along the bottom folded triangle of the kite. This is done in two phases. 

 

2 Most geometric figures in this paper have been drawn to scale using the GeoGebra software [5]. 
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Fig. 3: Folding the original square to a kite shape 
In the first phase, the top half of the folded triangle is folded in half multiple times to create eight equal-width hori-
zontal sections in the top half of the folded triangle (see Figure 4(a)). If 𝑋𝑋 represents the side length of the original 
square, then the width of these 8 sections is 𝑋𝑋

16
. This is because the total height of the folded triangle is 𝑋𝑋, and it is 

divided by two every time it is folded.  
In the second phase, the folding instructions require repeatedly folding the bottom tip of the kite shape up to 1½ widths 
of the horizontal sections starting from the top (see Figure 4(b)). Observe that the first horizontal section created in 
this second phase has a width of (1

2
∗ 3
2
) of 𝑋𝑋

16
. The widths of the remaining horizontal sections can be similarly derived. 

 
Fig. 4: Folding the horizontal sections 
After completing the two phases, we get twenty horizontal sections with the following properties (see Figure 5(a)): 
8 equal-width sections, each with a width of 𝑋𝑋/16. 
5 equal-width sections, each with a width of 3/4 of 𝑋𝑋/16. 
3 equal-width sections, each approximately (3/4)2 of 𝑋𝑋/16. 
2 equal-width sections, each approximately (3/4)3 of 𝑋𝑋/16. 
1 section, with width of approximately (3/4)4 of 𝑋𝑋/16. 
1 section, with width of approximately (3/4)5of 𝑋𝑋/16. 
 
Observations: We note two interesting findings revealed by our modeling so far: 
The number of equal-width sections, counted from the bottom, follows the Fibonacci Sequence (1, 1, 2, 3, 5, 8, …). 
This is fascinating because the Fibonacci Sequence, in fact, lies at the basis of the construction of the famous Golden 
Spiral. Does this mean that the Golden Spiral models the Origami Navel Shell well? 
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The width of each group of equal-width sections grows by the ratio of 4/3 from the previous, starting at the bottom tip 
of the kite. Will this ratio of 1.33 play a role in the model developed for the Origami Navel Shell? 
We will revisit these observations after deriving our models. 
 
The Angles Between Outer Edges, 𝜔𝜔𝑖𝑖 
 
After creasing the horizontal sections of the triangle, we are instructed to make diagonal creases in each section, 
starting from the center line and going up to the top right corner of each section (as shown in Figure 5(b) and Figure 
6). 

 
Fig. 5: The completed horizontal and diagonal creases 
For determining the angles between the spiral outer edges, we introduce the following notation. Li represents the width 
of the ith section, starting from the bottom, Hi represents the length of the top horizontal edge of the ith section, and 𝜇𝜇𝑖𝑖 
represents the angle made by the diagonal crease going from the bottom left to the top right of the ith section. After 
careful examination of the folds in origami structures we constructed, we realized that the angle 𝜇𝜇𝑖𝑖 (shown in Figure 
6) determines the angle between the neighboring outer edges of the final folded spiral. Below, we elaborate how. 
For folding the ith outer edge of the spiral, the bottom right tip (Bi-1) of the green triangle in Figure 6 is folded along 
the dashed diagonal crease (Ai-1Bi), resulting in the orange triangle. This implies that the angle between the outer edges 
Li and Li-1 is 180° −  2 ∗ 𝜇𝜇𝑖𝑖 (or with respect to Figure 2, 𝜔𝜔𝑖𝑖 = 2 ∗ 𝜇𝜇𝑖𝑖). Therefore, our search for the angle between the 
outer edges of the constructed spiral boils down to determining the angle of 𝜇𝜇𝑖𝑖 for all twenty sections. 

 
Fig. 6: The 𝑖𝑖𝑡𝑡ℎ horizontal section 
Lemma 1: In the 𝑖𝑖𝑡𝑡ℎ section, 𝜇𝜇𝑖𝑖 =𝑐𝑐𝑐𝑐𝑐𝑐−1 (𝐻𝐻𝑖𝑖

𝐿𝐿𝑖𝑖
). 

Proof: AiBi and Ai-1Bi-1 (top and bottom horizontal edges of the ith section) are parallel segments. Based on the Alter-
nate Interior Angles Theorem [33], we get: ∠Ai-1BiAi  = 𝜇𝜇𝑖𝑖 . In the right triangle Ai-1AiBi, we use the  cotangent ratio 
of 𝜇𝜇𝑖𝑖 to get: 𝜇𝜇𝑖𝑖 =𝑐𝑐𝑐𝑐𝑐𝑐−1 (𝐻𝐻𝑖𝑖

𝐿𝐿𝑖𝑖
).  Hence, proved.                                 ☐ 

In Section 3.A, we have already derived the values of 𝐿𝐿𝑖𝑖 for all horizontal sections. For computing 
𝜇𝜇𝑖𝑖 using Lemma 1, we also need the horizontal edge lengths 𝐻𝐻𝑖𝑖 . We rely on the next lemma for that. 
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Lemma 2: 𝐻𝐻𝑖𝑖−1 = 𝐻𝐻𝑖𝑖 − 𝐿𝐿𝑖𝑖 ∗𝑐𝑐𝑡𝑡𝑡𝑡 (𝜋𝜋/8),  2 ≤ 𝑖𝑖 ≤ 20. 
Proof: To establish the relationship between 𝐻𝐻𝑖𝑖  and 𝐻𝐻𝑖𝑖−1, we amplify the right-angled triangle 𝐵𝐵𝑖𝑖−1𝐷𝐷𝑖𝑖𝐵𝐵𝑖𝑖 , located at 
the right side of 𝑖𝑖𝑡𝑡ℎ section (shown on the right of Figure 6). The top edge length of this triangle is given by 𝛥𝛥𝐻𝐻𝑖𝑖 =
𝐻𝐻𝑖𝑖 − 𝐻𝐻𝑖𝑖−1. We use the tangent ratio of 𝛼𝛼𝑖𝑖 to get: 𝑐𝑐𝑡𝑡𝑡𝑡 (𝛼𝛼𝑖𝑖) = 𝛥𝛥𝐻𝐻𝑖𝑖

𝐿𝐿𝑖𝑖
. 

In order to find out the value of 𝛼𝛼𝑖𝑖, we first consider the angle ∠DAC in Figure 3, and make two observations. 
First, when the original square is folded into a kite, the resulting triangles ABC and ABD are congruent. This is 
because edge lengths AB and AD are equal, BC and DC are equal, and AC is a common edge of both triangles 
(Reflexive property). From the SSS Triangle Congruence Theorem, the two triangles are congruent [33]. This implies 
that angle ∠BAC is equal to angle ∠DAC. Second, we know that angle ∠BAD is 𝜋𝜋

4
 radians (or 45°), because the 

diagonal line of the square divides the right-angled vertex into two halves. Therefore, angle ∠DAC is 𝜋𝜋
8
 radians. 

Next, we establish that angle DAC is equal to angle 𝐷𝐷𝑖𝑖𝐵𝐵𝑖𝑖−1𝐵𝐵𝑖𝑖 . Note that AD and Bi-1Di are parallel to each other (since 
both are perpendicular to the horizontal axis). The line segment AC (from Figure 3) intersects both of these. Based on 
the Corresponding Angles Theorem [33], we get: ∠𝐷𝐷𝐷𝐷𝐷𝐷 = ∠ 𝐷𝐷𝑖𝑖𝐵𝐵𝑖𝑖−1𝐵𝐵𝑖𝑖 . Hence, 𝛼𝛼𝑖𝑖 = ∠ 𝐷𝐷𝑖𝑖𝐵𝐵𝑖𝑖−1𝐵𝐵𝑖𝑖 = 𝜋𝜋

8
 radians. 

Substituting for 𝛼𝛼𝑖𝑖, we get: 𝑐𝑐𝑡𝑡𝑡𝑡 (𝜋𝜋
8

) = 𝛥𝛥𝐻𝐻𝑖𝑖
𝐿𝐿𝑖𝑖

. Thus, 𝐻𝐻𝑖𝑖−1 = 𝐻𝐻𝑖𝑖 − 𝐿𝐿𝑖𝑖 ∗𝑐𝑐𝑡𝑡𝑡𝑡 (𝜋𝜋/8). Hence, proved.            ☐ 

Lemma 2 gives us a recursive relation for deriving 𝐻𝐻𝑖𝑖−1 from 𝐻𝐻𝑖𝑖 . The angle between the outer spiral edges in Figure 
2 is given by: 𝜔𝜔𝑖𝑖 = 2 ∗ 𝜇𝜇𝑖𝑖. Lemma 3 below builds on Lemmas 1 and 2 to establish how to compute 𝜔𝜔𝑖𝑖 . 
Lemma 3: The angle between the outer spiral edges is given by: 𝜔𝜔𝑖𝑖 = 2 𝑐𝑐𝑐𝑐𝑐𝑐−1 �𝐻𝐻𝑖𝑖

𝐿𝐿𝑖𝑖
�, where 𝐻𝐻20

𝐿𝐿20
= 16 𝑐𝑐𝑡𝑡𝑡𝑡(𝜋𝜋/8), and 

𝐻𝐻𝑖𝑖−1
𝐿𝐿𝑖𝑖

= 𝐻𝐻𝑖𝑖
𝐿𝐿𝑖𝑖
− 𝑐𝑐𝑡𝑡𝑡𝑡(𝜋𝜋/8), for all 2 ≤ 𝑖𝑖 ≤ 20. 

Proof: In triangle ADC in Figure 3, DC = 𝐻𝐻20, and AD = 𝑋𝑋, and angle ∠DAC is 𝜋𝜋
8
 radians (established in proof of 

Lemma 2). In Section 3.1, we have already established that 𝐿𝐿20 = 𝑋𝑋/16. Hence, 𝑐𝑐𝑡𝑡𝑡𝑡(𝜋𝜋/8)  =  𝐻𝐻20
16 𝐿𝐿20

, or 𝐻𝐻20
𝐿𝐿20

=
16 𝑐𝑐𝑡𝑡𝑡𝑡(𝜋𝜋/8). 
From Lemma 2, we get: 𝐻𝐻𝑖𝑖−1

𝐿𝐿𝑖𝑖
= 𝐻𝐻𝑖𝑖

𝐿𝐿𝑖𝑖
− 𝑐𝑐𝑡𝑡𝑡𝑡(𝜋𝜋/8), for all 2 ≤ 𝑖𝑖 ≤ 20.  

From Lemma 1, we get: 𝜔𝜔𝑖𝑖 = 2 𝜇𝜇𝑖𝑖  = 2 𝑐𝑐𝑐𝑐𝑐𝑐−1 �𝐻𝐻𝑖𝑖
𝐿𝐿𝑖𝑖
�. Hence, proved.         ☐ 

We use Lemma 3 to compute 𝜔𝜔𝑖𝑖 for all outer edges of the folded spiral. 
 
The Complete Geometric Model 
 
All of the computed values of 𝐿𝐿𝑖𝑖 and 𝜔𝜔𝑖𝑖 are listed in Table 1. This completes our Geometric Model of an ideal con-
struction of Fuse’s Origami Navel Shell spiral. Figure 7 plots this model using the GeoGebra software [5]. 

𝑖𝑖 𝐿𝐿𝑖𝑖  𝐻𝐻𝑖𝑖  𝜔𝜔𝑖𝑖 �𝜔𝜔𝑘𝑘

𝑖𝑖

𝑘𝑘=1

 

1 45X/2048 143(√2-1)X/2048 74.45° 74.45° 

2 53X/2048 49(√2-1)X/512 66.27° 140.72° 

3 14X/512 63(√2-1)X/512 56.43° 197.15° 

4 17X/512 40(√2-1)X/256 54.32° 251.47° 

5 9X/256 49(√2-1)X/256 47.83° 299.30° 

6 9X/256 29(√2-1)X/128 41.07° 340.37° 

Volume 10 Issue 3 (2021) 

ISSN: 2167-1907 www.JSR.org 6



7 5X/128 17(√2-1)X/64 39.09° 379.46° 

8 3X/64 20(√2-1)X/64 39.81° 419.27° 

9 3X/64 23(√2-1)X/64 34.96° 454.23° 

10 3X/64 26(√2-1)X/64 31.13° 485.36° 

11 3X/64 29(√2-1)X/64 28.05° 513.41° 

12 3X/64 8(√2-1)X/16 25.51° 538.92° 

13 X/16 9(√2-1)X/16 30.03° 568.95° 

14 X/16 10(√2-1)X/16 27.15° 596.10° 

15 X/16 11(√2-1)X/16 24.76° 620.86° 

16 X/16 12(√2-1)X/16 22.75° 643.61° 

17 X/16 13(√2-1)X/16 21.04° 664.65° 

18 X/16 14(√2-1)X/16 19.57° 684.82° 

19 X/16 15(√2-1)X/16 1` 702.50° 

Table 1: Specification of the Geometric Model 
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Fig. 7: The completed Geometric Model 
 
Parametric Curve Fitting 
 
Our Geometric Model is non-smooth. In this section, we find a parametric smooth spiral that approximates our Geo-
metric Model well. This will also help us compare to previously proposed smooth models for the Nautilus Shell. 
Short-listing to a Logarithmic Spiral 

We began to think about how to find a smooth spiral that approximates our Geometric Model. In order to 
shortlist the types of spirals to consider, we tried fitting prominent ones, including the Archimedean Spiral, the Golden 
Spiral, the Hyperbolic Spiral, and Fermat’s Spiral [42]. 

As can be seen in Figure 8, the Archimedean Spiral and Fermat’s Spiral grow too slow to fit our geometric 
model. The Hyperbolic Spiral, on the other hand, grows too fast. The Golden Spiral matches the inner vertices of our 
geometric model better than the others, but seems to grow fast for the outer vertices. The spiral of the Nautilus Shell, 
which the Origami Navel Shell is believed to be based on, is known to be a logarithmic spiral. The Golden Spiral is 
also a type of logarithmic spiral, with its own characteristic rate of growth – perhaps a logarithmic spiral with a smaller 
growth factor might be the smooth spiral that best fits our geometric model. In the rest of this section, we focus on the 
logarithmic spiral, and outline our search for finding the best-fitting one. 

 
Fig. 8: Fitting prominent mathematical spirals to our Geometric Model 
 
The Four Unknown Parameters 
 
The general polar equation of a logarithmic spiral is 𝑟𝑟 = 𝑡𝑡 ∗ 𝑒𝑒𝜃𝜃∗𝑏𝑏 , in which 𝜃𝜃 is the angle of rotation as the curve 
spirals, r is the radius corresponding to angle 𝜃𝜃 of the spiral, 𝑡𝑡 is a constant that represents the scaling factor, 𝑏𝑏 is a 
constant that represents the growth factor, and 𝑒𝑒 is the base of the natural logarithm. The first two unknowns in our 
search for a smooth spiral that fits our Geometric Model well, therefore, are 𝑡𝑡 and 𝑏𝑏.  

However, from Tomoko Fuse’s folding instructions, there is no obvious way to locate the center of the geo-
metric spiral (the origin is typically the center of smooth mathematical spirals). Therefore, the problem of fitting a 
smooth spiral to our Geometric Model is also concerning the translation vector that must be applied to the Geometric 
Model in order to position it in the same coordinate space. The example in Figure 9 illustrates the role of the translation 
vector – it is clear that the translation in the first figure fits the Golden Spiral much better than in the second figure. 
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Fig. 9: Role of translation in finding the best fit 
 
So, finding the best fitting logarithmic spiral boils down to searching for four unknowns; the x and y translates, 
(𝑥𝑥𝑥𝑥,𝑦𝑦𝑥𝑥), that must be applied to the Geometric Model, and the 𝑡𝑡 and 𝑏𝑏 that define the smooth logarithmic spiral.  
After trying a few combinations of the four unknowns, we soon realized that the search space for the four unknowns 
is too large for us to find the best fitting curve manually. So, instead, we develop a computer program that computa-
tionally searches through the space of the four unknowns.  
 
Measuring the Goodness of Fit 
 
In order to develop a numerical method for finding the best-fitting logarithmic spiral, we need to formulate a measure 
that captures how well-fitting a given smooth spiral is to our geometric model. It would be natural to use the gaps 
between the vertices of our Geometric Model and a given smooth spiral as a measure of the goodness of fit. But, how 
do we find out what is the gap between a given vertex and the smooth spiral?  

Vertical Gap (Cartesian Coordinates): One option is to rely on the Cartesian coordinates (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) of the 
twenty vertices of our Geometric Model, and for each 𝑥𝑥𝑖𝑖, compute the difference between 𝑦𝑦𝑖𝑖  and the y-coordinate of 
that point on the logarithmic spiral, which lies at the intersection with the line 𝑥𝑥 =  𝑥𝑥𝑖𝑖 . This measure captures the 
vertical gap between the two spirals (Figure 10 (a)). However, we observed that this measure can significantly differ 
from the actual gap between the geometric model and smooth spiral – as the example in Figure 10 (a) shows, the 
vertical gap may be significantly larger for some vertices than the shortest gap between the vertex and the logarithmic 
spiral. Therefore, the vertical gap is an unreliable measure. 

 
Fig. 10: Vertical, Radial, and Shortest Gaps 
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Shortest Distance: The actual shortest distance from a vertex is to that point on the smooth curve, such that 
the line joining the two points makes a right angle with the tangent of the smooth curve (see Figure 10 (a)). However, 
there is no known closed form formula for the shortest distance between a point (vertex, in our case) and a logarithmic 
curve [37]. This implies that in order to compute the shortest distance from a given vertex to a logarithmic spiral, we 
would have to “try out” several points on the logarithmic curve and find the one that is the shortest distance away 
from the vertex. This can be quite tedious to compute. So, instead, we consider the radial gap, which is a close ap-
proximation of the shortest distance, as explained next. 

Radial Gap (Polar Coordinates): Logarithmic spirals have a unique property that any radial line to a point 
on the spiral makes the same angle (given by cot-1(b)) with the tangent at that point [30]. From Figure 10 (b), we can 
see that when cot-1(b) is large (close to 90°), the radial gap is a good approximation for the shortest distance between 
a vertex and the logarithmic curve. Based on rough fitting by hand, we believe that the best-fitting spiral has a value 
of b such that cot-1(b) is somewhere between 75°-80°. Hence, we use the radial gap, which is much more efficient to 
compute than the shortest gap, as a close approximation of the latter. 

 
Fig. 11: Radial gaps can be positive or negative 

 
Squaring the Gap: Depending on whether a given vertex of the Geometric Model lies outside or inside the 

closest curve of the smooth spiral, the radial gap could be positive or negative, respectively (Figure 11). If such radial 
gaps are simply added up, they may cancel each other out, giving the illusion that a given smooth spiral is better fitting 
than it actually is. However, if we were to compute the squares of the radial gaps before adding them, the differences 
would not cancel out, and would help find the smooth spiral that is actually close to all vertices. This is similar to the 
least-squares method in curve fitting [31]. 
Formulating the Best-Fit Problem 

 
Fig. 12: Deriving 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 from 𝐿𝐿𝑖𝑖 ,𝜔𝜔𝑖𝑖 
 

Deriving Coordinates of the Vertices: In order to compute the radial gap, we need to figure out the polar 
coordinates of the different vertices of our Geometric Model. For that, we first derive the cartesian coordinates of the 
vertices from the values of 𝐿𝐿𝑖𝑖 and 𝜔𝜔𝑖𝑖 , in a recursive manner. We first note that while 𝜔𝜔𝑖𝑖 is the angle that the 𝑖𝑖𝑡𝑡ℎ outer 
edge makes with respect to the (𝑖𝑖 − 1)𝑡𝑡ℎ edge, the angle that it makes with respect to the horizontal axis, can be 
computed recursively as: ∑ 𝜔𝜔𝑘𝑘

𝑖𝑖
𝑘𝑘=1 . Figure 12 then helps establish the following recursive relations for computing 

(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) from (𝑥𝑥𝑖𝑖−1,𝑦𝑦𝑖𝑖−1): 
 𝑦𝑦𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑡𝑡(∑ 𝜔𝜔𝑘𝑘

𝑖𝑖
𝑘𝑘=1 ) ∗ 𝐿𝐿𝑖𝑖 + 𝑦𝑦𝑖𝑖−1          (1) 
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𝑥𝑥𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑠𝑠(∑ 𝜔𝜔𝑘𝑘
𝑖𝑖
𝑘𝑘=1 ) ∗ 𝐿𝐿𝑖𝑖 + 𝑥𝑥𝑖𝑖−1          (2) 

Using 𝑥𝑥0 = 𝑦𝑦0 = 0, we compute all (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖). We then translate these coordinates, per the translation vector we are 
considering (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑥𝑥).After doing so, we convert each vertex to polar coordinates (𝑟𝑟𝑖𝑖 ,𝜃𝜃𝑖𝑖) using: 
𝑟𝑟𝑖𝑖 = �(𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑥𝑥)2 + (𝑦𝑦𝑖𝑖 + 𝑦𝑦𝑥𝑥)2         (3) 
𝜃𝜃𝑖𝑖 = 𝑐𝑐𝑡𝑡𝑡𝑡−1 �𝑦𝑦𝑖𝑖+𝑦𝑦𝑦𝑦

𝑥𝑥𝑖𝑖+𝑥𝑥𝑦𝑦
�          (4) 

 
The Minimization Problem: Given the polar coordinates of the vertices of our translated geometric model, 

we can then compute the “fit” of a given smooth spiral (defined by 𝑡𝑡, 𝑏𝑏), by using the expression: 𝑓𝑓𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡𝑓𝑓 𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟 =
∑ (𝑡𝑡𝑒𝑒𝑏𝑏𝜃𝜃𝑖𝑖  −  𝑟𝑟𝑖𝑖)220
𝑖𝑖=1 . 

Given the above, the curve-fitting problem boils down to searching through the space of {𝑡𝑡, 𝑏𝑏, 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑥𝑥}, to find the 
combination that yields the lowest value of fitting error. Formally, our goal is to solve the minimization problem 
below: 
𝑚𝑚𝑖𝑖𝑡𝑡

{𝑎𝑎,𝑏𝑏,𝑥𝑥𝑦𝑦,𝑦𝑦𝑦𝑦}
�∑ (𝑡𝑡𝑒𝑒𝑏𝑏𝜃𝜃𝑖𝑖  −  𝑟𝑟𝑖𝑖)220

𝑖𝑖=1 �      (5) 

We develop Python code for solving the above numerically. 
 

Are There Additional Local Minima? Our numerical search for a global minimum is more likely to succeed 
if there are no additional local minima that mislead us in the search space. If not, for a given 𝑏𝑏, we may conclude that 
a specific combination of (𝑡𝑡, 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑥𝑥) results in the best-fit, while there may be a much better-fitting combination that 
exists elsewhere. 

However, we do not expect local minima to interfere with our search. Here is the intuition for each of the 
three parameters, 𝑡𝑡, 𝑥𝑥𝑥𝑥, and 𝑦𝑦𝑥𝑥. First, for a given combination of (𝑏𝑏, 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑥𝑥), if we increase (or decrease) the scale 
factor 𝑡𝑡 from the best fitting value, the logarithmic spiral will grow (or shrink) in size, increasing the radial gap from 
the vertices of the Geometric Model – the radial gaps will not decrease by further changes in 𝑡𝑡 (therefore, will not 
result in a local minimum). Second, for a given combination of (𝑏𝑏, 𝑡𝑡), if we increase/decrease the 𝑥𝑥𝑥𝑥 and 𝑦𝑦𝑥𝑥 from 
their optimal values, the horizontal and vertical gap (and also, the radial gap) between the logarithmic spiral and 
geometric spiral vertices will increase – here is no change that will then cause the radial gaps to decrease (and result 
in a local minimum) with further translation.  In short, for each of the parameters 𝑡𝑡, 𝑥𝑥𝑥𝑥, and 𝑦𝑦𝑥𝑥, as soon as we start 
deviating from the best-fitting value, the sum of radial gaps will only increase (and not result in local minima). Finally, 
we limit the search space for the four unknowns based on manually trying out a few different logarithmic spirals and 
translation vectors – in Section 5, we explicitly validate the above arguments in this limited search space.  
The Python Code 

We developed a Python program for solving the minimization problem formulated in Section 4.4. In the code 
screenshot shown above, we calculate the Cartesian coordinates of the vertices for an untranslated geometric model. 
We convert the vertices to polar coordinates, and compute the sum of the radial gaps for a given combination of 𝑡𝑡, 𝑏𝑏, 
𝑥𝑥𝑥𝑥, and 𝑦𝑦𝑥𝑥. We iterate over a wide range of values for these four parameters, each with increments of 0.001: 𝑡𝑡 ∈
[0.31,0.34], 𝑏𝑏 ∈ [0.20,0.22], 𝑥𝑥𝑥𝑥 ∈ [−0.2,−0.11], 𝑦𝑦𝑥𝑥 ∈ [−0.22,−0.17]. 

Computation Time: We soon realized that if we were to attempt to calculate the best-fitting smooth spiral 
with a granularity of 0.001 for all the four unknowns, it would take more than 1000 hours for our processing to 
complete. So, instead, we used a granularity of 0.001 for only 𝑡𝑡 and 𝑏𝑏, and initially used a coarser granularity of 0.01 
for 𝑥𝑥𝑥𝑥 and 𝑦𝑦𝑥𝑥. For each value of 𝑏𝑏, after finding the best-fitting values of (𝑡𝑡, 𝑥𝑥𝑥𝑥,𝑦𝑦𝑥𝑥) using the coarser granularity for 
the translates, we then conducted a “second” search around the best-fitting values, with a finer granularity of 0.001 – 
this helped us find even better-fitting translation vectors. Our final best-fitting curve was the one obtained after this 
two-step search. This, in fact, made a huge difference in the computation time, which ended up being only around 26 
hours (on a machine with a 2.2 GHz i7 processor, and 8 GB memory). 

The Best Fitting Parametric Spiral: Our code found that the following combination of the four unknown 
parameters yielded the best fitting parametric smooth spiral:  
𝑏𝑏 ≈ 0.207 

Volume 10 Issue 3 (2021) 

ISSN: 2167-1907 www.JSR.org 11



𝑡𝑡 ≈ 0.339 
𝑥𝑥𝑥𝑥 ≈ -0.114 
𝑦𝑦𝑥𝑥 ≈ -0.205 
We note that the scale of 𝑡𝑡, 𝑥𝑥𝑥𝑥, and 𝑦𝑦𝑥𝑥 depends on the side-length, 𝑋𝑋, of the original origami square. However, 𝑏𝑏 
does not depend on 𝑋𝑋, because it is simply a growth factor, and not a scale or translation factor. For our computations, 
we used 𝑋𝑋 = 16. 
 
The Usefulness of a Parametric Model 
 
The best-fitting Smooth Model we have discovered is a parametric model that is completely characterized by just two 
parameters (a and b).  It is important to note that this model offers significant reduction in the number of parameters 
over the Geometric Model. The number of parameters in the Geometric model grows linearly as the number of vertices 
increases, while the smooth approximation can model a spiral with any number of turns, with just a and b. 
Validation 
 
How Well Does the Parametric Smooth Model Fit the Geometric Model? 
 
In Figure 13, we plot the best-fitting parameter combination for our translated Geometric Model, and the smooth 
logarithmic spiral. The smooth spiral fits the vertices quite well. It does not touch most vertices, but is fairly close to 
all and achieves an excellent average of the gaps between all vertices and itself.  

 

 
Can We Confirm Absence of Local Minima in Our Search For Best-Fitting Smooth Spirals? 

To validate that there are no additional local minima in our search for the best fitting values of 𝑡𝑡, 𝑏𝑏, 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑥𝑥, we compute 
our fitting error as a function of these. We first select the best-fitting 𝑡𝑡 and 𝑏𝑏 found in Section 4.5, and compute the 
fitting error yielded for different values of 𝑥𝑥𝑥𝑥 and 𝑦𝑦𝑥𝑥. Figure 14(a) plots the result (fitting error is normalized). As 
can be seen, the fitting error is a convex function with respect to 𝑥𝑥𝑥𝑥 and 𝑦𝑦𝑥𝑥, and has a clear defined minimum point 
which confirms that there are no additional local minima.   
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We next study whether the fitting error is also convex with respect to 𝑡𝑡 and 𝑏𝑏. For each combination of (𝑡𝑡, 𝑏𝑏), 

we use the translation vector (𝑥𝑥𝑥𝑥,𝑦𝑦𝑥𝑥) that yields the smallest fitting error, and then plot the fitting error in Figure 
14(b). We observe that this graph too has only one global minimum and is also a convex function. This confirms that 
our search for a parametric smooth spiral approximation of our Geometric model, truly finds the best fit. 
Applications of Our Models 
Now that we have mathematical models for the Origami Navel Shell, we apply these to answer several open questions 
in this section.  

Debunking a Claim: Tomoko Fuse’s Origami Navel Shell is quite popular and is featured and discussed in 
many websites. Often, strong claims are made about it. One online blog source that we came across asserted that 
Fuse’s Origami Navel Shell was not a logarithmic spiral, and was not even mathematically precise [23] – our ability 
to create a very well-fitting smooth logarithmic model for Fuse’s design refutes this claim. 
 
How Does the Origami Navel Shell Design Relate to Prior Mathematical Models Proposed for 
Nautilus Shells? 
 
We use our models to assess whether or not the Origami Navel Shell design is a representative model for Nautilus 
Shells. In this section, we do this by comparing our models to those found in the literature for the Nautilus Shell. For 
each model considered in this section, we use a scale factor that lets the inner vertices of our Geometric Model fit it 
well (and then we assess how well the outer vertices fit). This helps us to get a clear visual and fair comparison of 
differences between different models.3 

 

3 In this subsection, our Geometric and Smooth models are plotted in black and red colors, respectively, while other 
models are plotted in blue. 
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To begin, we wanted to see if the Golden Spiral, which some claim matches the Nautilus shell, would actually 

fit our model [12][22][34][36]. After fitting the equation of a Golden Spiral (𝑟𝑟 = 1.6182𝜃𝜃/𝜋𝜋) onto our smooth curve, 
we found that it grows much too fast for our Geometric and Smooth Models (Figure 15 (a)). If the Origami Navel 
Shell indeed is a representative model of the Nautilus Shell in nature, then our findings support the counterclaims in 
[11][19][26][23][35], that the Nautilus Shell is not a Golden Spiral. 
Reference [38] proposed this equation for the Nautilus Shell, 𝑟𝑟 = 1.2(1.25𝜃𝜃), but on comparing a scaled version with 
our models, we found that after fitting the inner curves well, it grew much too fast for our models (see Figure 15 (b)). 
Reference [14] measures a few different real specimens of the species Nautilus Pompilius and found that the growth 
ratio of different specimens was between 1.24 and 1.43, with the average being 1.33. On comparing a scaled version 
of the spiral that captures this average ratio,  𝑟𝑟 = 1.332𝜃𝜃/𝜋𝜋, we found that when fit well to the inner curves, it grew 
too slowly for our models (see Figure 15 (c)). 

The source [28] states that a growth by the Golden ratio every 90° is too fast for the Nautilus Shell, and 180° 
is a much better fit. When we compare a scaled version of the corresponding equation 𝑟𝑟 = 1.618𝜃𝜃/𝜋𝜋 with our models, 
we find that it grows too slowly and does not fit most of the Geometric Model vertices (see Figure 16(a)). 

 

 
The sources [26] and [28] note that the average spiral corresponding to the 2D cross-section of Nautilus 

shells, grows by a ratio of 3 every full turn (unlike the Golden Spiral that grows by a ratio of 6.85 every full turn). 
This boils down to a logarithmic growth rate of 31/4 every 𝜋𝜋

2
 radians. The corresponding spiral equation would be: 

𝑟𝑟 = 1.3182𝜃𝜃/𝜋𝜋. Figure 16(b) compares the scaled version of this to our models. We find that this spiral grows too 
slowly to fit the outer vertices of the Geometric Model well. 

Source [4] relied on measurements of 80 Nautilus specimens from the Smithsonian collection, and found that 
the average growth ratio for most species was actually 1.31, rather than the 1.33 (= 4/3) reported in [14]. When we 
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graphed the spiral using a scaled version of the corresponding equation 𝑟𝑟 = 1.312𝜃𝜃/𝜋𝜋, we found that when fit to the 
inner curve well, it grew too slowly for our Smooth and Geometric Models (see Figure 16 (c)). [4] also found that the 
rare species of Nautilus Scrobiculatus had a characteristically different growth ratio of 1.356, the Meta-golden Ratio 
Chi. The corresponding curve, (𝑟𝑟 = 1.312𝜃𝜃/𝜋𝜋), matched our Geometric and Smooth models the most among all mod-
els considered so far (Figure 16 (d)) – however, our models still grow faster. 
 
Can the Ideal Geometric Model Be Used as a Benchmark for Assessing Images of Origami Con-
structions? 
 
Comparing our Geometric Model of the ideal Origami Navel Shell with images of origami constructions available 
online gives us many observations regarding how well they fit together. To match our Geometric Model, we attempted 
to first line up the outer vertices of the origami images and our ideal model. We then assessed how well the remaining 
vertices matched (see Figure 17). 

 
Fig. 17: Our geometric model compared to online/self images of Origami Navel Shells 
 

We find that the outer edges of most origami samples match our ideal Geometric Model quite well; the extent 
to which the inner and middle edges match, varied across the different photographs. As noted before, we believe this 
is due to two main factors – the human error involved in the folding process, and the angle and non-orthogonal direc-
tion from which the photograph is taken. Our model helped us understand that human and photographic errors impact 
the inner edges of an origami construction more significantly than the outer edges. In some origami images (where 
the origami structure seems to have been flattened), our model has a good fit with several inner edges as well.  
 
How Closely Does the Origami Navel Shell Model Different Variants of the Nautilus Species? 
 
We collected several online images of the Nautilus shell found in nature, and next studied how well these images 
match with our best-fitting Smooth Model (Section 4.5). The results are shown in Figures 20 – Figure 18(a) shows the 
results when we first scale our Smooth Model to try and fit the outer curves of the Nautilus image, and then see how 
well the inner curves match; while Figure 18(b) tries to scale the Smooth Model to first fit the inner curves well, and 
then see how well the outer curves match. 

We find that the degree of match of our Smooth model somewhat differs across different Nautilus images. 
This is an expected result because of the reported variability across different Nautilus Shells found in nature [28].  
Our parametric Smooth Model grows too fast for many Nautilus images. Specifically, when we try to fit the outer 
curves first, the inner curves do not match well (Figure 18(a)); and when we try to fit the inner curves first, the outer 
curves do not match well (Figure 18(b)). Both ways, the growth rate of our Smooth Model is greater than that of the 
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Nautili. Visually, first trying to match the inner curves seems to result in a worse fit (Figure 18(b)), but this could 
simply be a visual artifact.  

The notable exception to the above observation is the last image in the set (bottom-most row in Figure 18) – 
this image is taken from [4], which studied 80 specimens from the Smithsonian collection; this specific image is that 
of the rare species of Nautilus Scrobiculatus. [4] notes that the growth rate of this variant is notably different from the 
rest of the specimen. We find that our Smooth Model is a much better match to the image of this specimen, compared 
to the other variants (for instance, the second-last row is the Nautilus Pompilius species). This is also supported by 
our evaluation in Section 6.1. 

 
Fig. 18: Our smooth spiral model compared to online images of the Nautilus shell 
 

Discussion 
 
How Do Our Models Relate to Our Observations from Section 3.1? 
 
Recall the questions we raised in Section 3.1, about the possible relation of our two observations (the ratio 4/3, and 
the Fibonacci Sequence) with the model we develop. In Section 3.1, we had noticed that the Fibonacci Sequence was 
present in the number of equal-width sections during the folding process and wondered if that may raise the Golden 
Spiral as a potential candidate for a good fitting spiral. Looking at Figure 15, we know that the Golden Spiral does not 
fit our Smooth or Geometric models well and grows much too fast with its growth rate of 1.618, φ, every quarter turn.   
In section 3.1, we also discovered that every equal-width section had edges that were 4/3 (≈ 1.33) as long as the edges 
in the previous set of equal-width sections. We first tried to draw parallel between the 1.33 ratio and the average 
growth rate of the Nautilus Shell reported in source [14] as 1.33. However, when we modeled a spiral using 1.33 as 
the growth rate instead of 1.618, the Golden Ratio, we found that it also did not fit well (Figure 16 (b)).  

With some more analysis, we realized that after converting 𝑒𝑒𝑏𝑏 in the logarithmic equation of our best-fitting 
Smooth Model (𝑏𝑏 ≈ 0.207) to the base of 1.618, the equation becomes 𝑟𝑟 =  1.6181.353 𝜃𝜃/𝜋𝜋. The number 1.353 is 
somewhat close to the mysterious ratio of 1.33 we observed in Section 3.1. Is there a relation? We do not know! It 
may simply be coincidental that the two numbers are similar, but we hope to explore this further in future work. 
 
Limitations of Our Approach 
 
One thing that our research did not help us understand was the relationship between the folding instructions and the 
growth rate of the Smooth Model – why did the specific growth rate (𝑏𝑏) of the Smooth Model we found through 
parametric curve-fitting, fit the Geometric Model so well? Was there something in the folding instructions that could 
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have helped us find this 𝑏𝑏 value without resorting to curve-fitting? Our methodology so far has not helped us make 
the connection.  

A possible source of error that may have impacted our results would be our decision to not use the shortest 
distance when computing our “fitting metric” (Section 4.3), and instead use the radial gaps for capturing how well 
fitting the Geometric Model was to a given smooth spiral. However, given the best-fitting smooth spiral we found (𝑏𝑏 
≈ 0.207), the angle made by the radial line with the tangent in Figure 10(b) is 78.3°(= 𝑐𝑐𝑐𝑐𝑐𝑐−1(𝑏𝑏)). We believe that 
using the shortest distance instead of the radial gap in this case would not have made a significant difference. 
Additionally, some of our evaluations could have been impacted because of photography issues. When comparing our 
Geometric Model to already constructed Origami Navel Shells, the angle that the picture was taken at, could have 
influenced how well fitting it actually was. 
We hope to study the impact of these limitations, along with other future directions identified next. 
 

Future Directions  
 
Our modeling efforts in this project have raised several open issues that could be explored next: 
 
Extending the Geometric Model Beyond 20 Edges: We wonder if the origami design by Tomoko Fuse [16][43] 
could be extended, can our model help us visualize what an origami spiral with more than 20 edges look like? What 
would the side lengths be? In our project we stopped at 8, making the length of each folded segment X/16, but if we 
continued with the next Fibonacci number, 13, how would the angles and side lengths be affected? What would the 
visual structure look like? Will it still fit the smooth spiral we discovered by curve-fitting? 
Evaluating Against Other “Goodness of Fit” Measures: Instead of trying to find the smooth spiral that best fits the 
vertices of the Geometric Model, we could try fitting to the edges of the latter. This would involve formulating a 
different measure for goodness of fit, and re-evaluating the minimization problem. Will the corresponding best-fitting 
smooth spiral help us discover connections to the folding instructions? 
Modeling Other Origami Spiral Designs: We wonder if we could model other origami spirals by analyzing their 
folding instructions and using a similar process to create a geometric model for them. For instance, reference [44] has 
a different origami design for a Nautilus Shell, so if we were to model it and create instructions similar to how we did 
our project, what aspects of our model would change?  
Designing Origami Structures for Known Mathematical Spirals: We wonder if our models can help design folding 
instructions that would lead to origami structures that fit the Golden Spiral well? Can we play around with the angles, 
widths, and diagonal creases of the folding instructions, in order to achieve the curve of the Golden Spiral? Can we 
do the same to derive origami designs for other mathematical spirals, including even non-logarithmic spirals?  
We hope our research lays the foundation for further research in bridging the gap between origami and mathematical 
models of spirals. We look forward to witnessing this field grow. 
 

Conclusion 
 
In this paper, we develop and evaluate mathematical models for Tomoko Fuse’s Origami Navel Shell, which is be-
lieved to be based on the prominent Nautilus Shell. To the best of our knowledge, this has never been done before. 
Using first-principles geometric and trigonometric constructs, we map Fuse’s folding instructions to a precise non-
smooth Geometric Model of an ideally-constructed origami spiral. We then rely on a curve fitting approach for finding 
the closest fitting smooth approximation. By exploiting equiangular properties of logarithmic spirals, we efficiently 
compute the gap between the Geometric Model and a given smooth spiral, and use it to formulate a minimization 
problem involving four unknowns. We then design a Python program for numerically searching for the best-fitting 
smooth logarithmic spiral, as well as for validating the convexity of the minimization problem. We use our two models 

Volume 10 Issue 3 (2021) 

ISSN: 2167-1907 www.JSR.org 17



to study prior proposed models of the Nautilus, online images of origami shells, as well as images of the different 
variants of the Nautilus Shell. Our evaluations show that: (i) the Smooth spiral is an excellent fit for the Geometric 
Model; (ii) our models for Origami Navel Shell are different from prior mathematical models for the Nautilus shell, 
but they come close to a recent model for a rare species of Nautilus; (iii) the Geometric Model can be used as a 
benchmark for evaluating construction quality of folded origami spirals, and shows that construction and photographic 
errors manifest mostly in the inner edges; and (iv) the Smooth Model helps understand how well the ideal Navel Shell 
matches different variants of the Nautilus species. 

Our research lies at the intersection of two important fields. The first is the field of shape modeling, which 
adds precision, understanding, better designs, and efficiency in several important fields of the scientific world 
[7][8][32][41]. While the shape of the famed Nautilus shell has been mathematically modeled by many, its origami 
counterparts have not. We focus on mathematically modeling the shape of Fuse’s Origami Navel Shell, and use it for 
benchmarking and understanding the origami structure as well as for understanding its relationship with Nautilus 
Shells. Our spiral models can also serve as benchmarks against other models developed by mathematicians and ori-
gamists. We hope that, in future, our models aid biologists in better understanding the physical and biological pro-
cesses that determine the shape of a Nautilus’s shell. 

The second field impacted by our research is that of origami. Since the middle of the 20th century, there has 
been a significant jump in the application of origami for solving problems in mathematics, science, engineering, and 
education. Origami solutions are simpler to develop than most scientific theorems. Different properties, such as shape, 
dimensions, and surface area, allow a device based on a single origami pattern to do multiple functions [3]. For in-
stance, origami has been used in applied math and engineering (such as folding telescopes and airbags, circle packing, 
models of bridges and stadiums, modeling DNA samples, and space technology), problem solving and shape modeling 
using paper folds and cuts [1][2][24][10]. So far, the mathematics of origami has mostly focused on studying proper-
ties (such as flat-foldability) of origami models, or using paper folds to solve mathematical equations [9][17][21]. 

Origamists have also specifically taken a keen interest in the Nautilus Shell, just like mathematicians have. 
Indeed, several different origami structures have been designed, based on the Nautilus. However, the mathematical 
modeling of such origami spirals has been mostly ignored. We have picked one of the most prominent of these origami 
structures, and have successfully derived mathematical models for it. We hope that this success encourages further 
work on developing a formal framework for mapping folding instructions, geometric models, and smooth spirals. 
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