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ABSTRACT 

The braking experienced by a magnet falling through a conductive pipe is often shown in laboratories, as it is highly 
intriguing and captures the imagination of students. The Eddy current is the physical phenomenon behind Eddy current 
braking, which has a lot of utility as Eddy current brakes do not utilise friction and hence do not wear. Linear eddy 
current brakes, often used on rail vehicles, use the rail as a conductor. Consequently, it is important to address the 
impact of the rail's properties. Previous papers have explored the significance of thickness and material however tem-
perature has yet to be considered. Here, coils were wrung around a copper pipe and an oscilloscope was used to 
determine the position of a neodymium magnet falling through pipe at various temperatures in order to determine the 
magnet’s terminal velocity. This data was then used to determine the braking force exerted by the pipe on the magnet. 
The experimental findings were compared to a theoretical model for the braking force. Graphing the inverse of the 
dragging constant and temperature showed a positive linear relationship suggesting that increasing the temperature 
reduces the braking force experienced by the magnet, which is in line with pre-existing theory that increasing the 
temperature will reduce conductivity, in turn reducing the eddy currents that cause the braking force. Finally, this 
study establishes that temperature, and hence the weather plays a significant role and needs to be considered when 
designing eddy current based machines, such as magnetic brakes in high-speed trains. 

Introduction 

Electricity and magnetism have always been an interest of mine, from a young age I was constructing basic circuits 
and playing with magnets, so it was natural for me to do an investigation into this area. Through my research, I came 
across many intriguing phenomena, one of which was eddy currents [1]. Eddy current brakes have many potential 
applications in high-speed electric trains, roller coasters. Their fast but smooth braking making them very unique and 
useful. It is important to note that the effectiveness of eddy current brakes is directly related to the speed of the moving 
component, with higher speeds leading to strong braking forces [2]. Interestingly, a large percentage of the power 
used in eddy current brakes is dissipated as heat. Consequently, circular eddy current brakes tend to have shorter 
lifespans than linear braking systems which utilise the rail instead of a circular disk. After reading about the application 
of eddy currents in induction brakes, which are used to smoothly stop high-speed trains, I began to wonder if the 
temperature of the rail track would affect the retarding force created by the eddy currents, specifically in linear eddy 
current brakes, see figure 1. Eddy current brakes apply Faraday’s law of induction [4] and Lenz’s law [5] by creating 
a significant retarding force that does not employ friction, instead using the electromagnetic forces between a magnet 
and a nearby conductor in relative motion. Dropping magnets down a conductive pipe is a simple and accurate method 
often used to explore eddy currents and since the magnet experiences a similar retarding force and follows the same 
physical laws as an eddy current brake, it is an ideal model to study the effect of temperature on eddy currents, see 
figure 2. 
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Figure 1. A linear eddy current brake in a German ICE 3 high-speed train in action [3] 

Figure 2. Experimental setup used to investigate effect of temperature on eddy currents 

Research Question: 

How does the retarding force experienced by a magnet falling down a copper tube change with the variation of the 
temperature of the copper pipe? 
According to Faraday’s law of induction [3], when a conductor experiences a change in magnetic flux, electromotive 
force (emf, ε) is induced within it, creating eddy currents. Since the magnitude of induced current is indirectly pro-
portional to the resistance of the conductor [5], the resistance will have a significant impact on the eddy currents 
generated. Many research papers explore and mathematically model the impact of the thickness and material of the 
conductive pipe on the damping forces experienced by the magnet [7]-[11], but I was unable to find a paper that related 
the temperature dependence of the resistivity of copper and the retarding force experienced by a magnet falling through 
a copper pipe at different temperatures. Since, the resistance of copper linearly increases with its temperature over a 
range of 100-800K [12, 13] and the retarding force is directly proportional to the strength of the eddy currents, it seems 
reasonable that the retarding force will be greater at lower temperatures and lesser at higher temperatures. 
The goal of my investigation was to prove or disprove my hypothesis through experimentation, and explain the results 
using physics principles. 
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Background Theory 
 
When a magnet falls down a copper pipe, its magnetic field moves with it and this moving magnetic field causes the 
pipe to experience a change in magnetic flux (𝑑𝑑Φ𝐵𝐵). According to Faraday’s law of induction [4], when the magnetic 
flux passing through a conductor changes, an emf is induced that is directly proportional to the rate of change of 
magnetic flux (Equation 1). 
 
Equation 1: 

𝜀𝜀 = −
dΦ𝐵𝐵

𝑑𝑑𝑑𝑑
 

 
The magnetic flux (Φ𝐵𝐵) through a surface is the perpendicular component of the magnetic field passing through the 
surface. According to [6] for a flat surface of area 𝐴𝐴 with uniform magnetic field 𝐵𝐵�⃗ , the magnetic flux is given by 
Equation 2. 
 
Equation 2: 

Φ𝐵𝐵 = 𝐵𝐵�⃗ × 𝐴𝐴 = 𝐵𝐵 × 𝐴𝐴 × 𝜙𝜙; 
where 𝜙𝜙 is the angle between magnetic field lines and normal to 𝐴𝐴, see figure 3a. 

Figure 3. a) Uniform magnetic flux incident on a flat surface at different angles 
  b) Non-uniform magnetic flux experienced by pipe when a magnet is dropped through it [14] 

 
Since the magnetic flux experienced by copper pipe is not uniform and pipe surface is not flat, see figure 3b, Equation 
1 cannot be directly used for the calculation of the induced emf. After searching Google Scholar for studies on eddy 
currents induced in copper pipes, using terms such as “fall of magnet through copper pipe”, “effect of pipe material 
on the fall of magnet” I found some interesting research articles that helped me with this problem. One of the articles 
related the induced eddy currents in pipe with its thickness used quite complicated formulae, which at the time, I was 
unable to understand [9]. However, this video tutorial [15], which thoroughly explained the mathematical modelling 
of the eddy currents induced within a pipe by a magnet falling through it, helped me understand the major physical 
concepts behind my investigation. The full derivation of the formulas used in the report from the video can be found 
in Appendix a. 
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According to the model, a copper pipe can be modelled as many rings of infinitesimally small thickness, and thus the 
force exerted by the pipe on the magnet can be found by integrating the force exerted by infinitesimally small rings 
through the dimensions of the pipe, figure 4. 

Figure 4. Breaking down the calculation of the retarding force exerted by the pipe on the magnet 
 
The magnetic field of the magnet is assumed equal to the magnetic field (𝐵𝐵�⃗ ) produced by a simple magnetic dipole, 
given by Equation 3. 
 
Equation 3: 

𝐵𝐵�⃗ =
𝜇𝜇0
4𝜋𝜋

× �
3 × (𝑚𝑚��⃗ ∙ 𝑟𝑟) × 𝑟𝑟

𝑟𝑟5
−
𝑚𝑚��⃗
𝑟𝑟3
� ; 

 
where 𝜇𝜇0 is the magnetic permeability of free space (𝜇𝜇0 = 4𝜋𝜋 × 10−7 𝑁𝑁𝐴𝐴−2), 𝑚𝑚 is the magnetic moment of the mag-
netic dipole, 𝑟𝑟 is the position vector of the point experiencing the magnetic field with coordinates (𝑥𝑥, 𝑦𝑦, 𝑧𝑧). 
To determine the magnetic field experienced by the ring, the total magnetic field was split into its x, y and z compo-
nents. As the pipe is a cylindrical object, it would be more convenient to represent the magnetic field using cylindrical 
coordinates (ρ, ϕ, z) where z is the vertical displacement of the ring from the magnetic dipole and ρ is the radius of 
the ring. 
 
Equation 4: 
 

𝐵𝐵𝜌𝜌 =
𝜇𝜇𝑚𝑚0
4𝜋𝜋

×
3𝑧𝑧𝑧𝑧

(𝑧𝑧2 + 𝑧𝑧2)
5
2
 

 
Equation 5: 

𝐵𝐵𝑧𝑧 =
𝜇𝜇0𝑚𝑚
4𝜋𝜋

× �
3 × 𝑧𝑧2

(𝑧𝑧2 + 𝑧𝑧2)
5
2
−

1

(𝑧𝑧2 + 𝑧𝑧2)
3
2
� 

 
From Equations 4 and 5, the emf induced within the ring can be calculated using Faraday’s law of induction [4], 
resulting in Equation 6. 
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Equation 6: 

             𝜀𝜀 =
3𝜇𝜇0𝑚𝑚

2
×

𝑅𝑅2𝑧𝑧

(𝑅𝑅2 + 𝑧𝑧2)
5
2

× 𝑣𝑣; 

 
where 𝑅𝑅 is the outer radius of the pipe, and 𝑣𝑣 is the velocity of the magnet. 
Now, with expressions for B_ρ, Equation 4, and ε, Equation 6, the force exerted by an infinitesimally small ring on 
the magnet (dF) can be calculated. 
 
Equation 7: 

𝑑𝑑𝑑𝑑 = 2𝜋𝜋𝑅𝑅𝐵𝐵𝜌𝜌𝑑𝑑𝑑𝑑 
 
Equation 8: 

𝑑𝑑𝑑𝑑 =
9𝜇𝜇02𝑚𝑚2

8𝜋𝜋
× 𝑣𝑣𝑣𝑣 ×

𝑅𝑅3𝑧𝑧2

(𝑅𝑅2 + 𝑧𝑧2)5
𝑑𝑑𝑧𝑧𝑑𝑑𝑅𝑅; 

 
where 𝑣𝑣 is the conductivity of the pipe. 
Using Equation 8, the total force exerted by the pipe on the magnet will be calculated by integrating 𝑑𝑑𝑑𝑑 for the di-
mensions of the pipe. 𝑅𝑅 will be integrated from, the inner radius to the outer radius of the pipe (𝑎𝑎 → 𝑏𝑏), and 𝑧𝑧 will be 
integrated from −∞ to ∞ to simply the calculations. Importantly, due to the length of the pipe, any change caused by 
the boundary conditions will have a negligible impact on the experimental results. 
 

𝑑𝑑 = �𝑑𝑑𝑑𝑑 =
9𝜇𝜇02𝑚𝑚2

8𝜋𝜋
𝑣𝑣𝑣𝑣 × � �

𝑅𝑅3𝑧𝑧2

(𝑅𝑅2 + 𝑧𝑧2)5
𝑑𝑑𝑧𝑧𝑑𝑑𝑅𝑅

∞ 

−∞

𝑏𝑏

𝑎𝑎
 

 
This calculation results in Equation 9. 
 
Equation 9: 

𝑑𝑑 =
15

1024
× 𝜇𝜇02𝑚𝑚2𝑣𝑣 × �

1
𝑎𝑎3

−
1
𝑏𝑏3
� 𝑣𝑣 

Equation 9 is in the same form as Equation 10. 
 
Equation 10: 

𝑑𝑑 = 𝑘𝑘𝑣𝑣; 
where 𝑘𝑘 is the dragging constant in kgs-1 and hence is given by Equation 11. 
 
Equation 11: 

𝑘𝑘 =
15

1024
× 𝜇𝜇02𝑚𝑚2𝑣𝑣 × �

1
𝑎𝑎3

−
1
𝑏𝑏3
� 

 
The change in pipe temperature will not change m nor will it change the thickness of pipe, as the thermal expansion 
coefficient of copper is very small [16], however the conductivity will decrease significantly. Therefore, the dragging 
constant k should decrease with increase in temperature of pipe. 
According to Newton’s second law [17], the net force on a moving object is 𝑀𝑀𝑎𝑎 = 𝑀𝑀�𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�. 

The magnet falling through pipe will experience two opposing forces; a downwards gravitational force (Mg) and an 
upwards magnetic braking force (F). This leads to Equation 12, which is equivalent to Equation 13. 
Equation 12: 

M �
dv
dt
� =  Mg − F 
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Equation 13: 

M �
dv
dt
� =  Mg − kv; 

 
where M is the mass of the magnet in kg, v is the velocity of the magnet in ms-1 and g is the gravitational acceleration 
in ms-2. 
When the magnet has reached terminal velocity, 𝑣𝑣 = 𝑣𝑣𝑇𝑇, the acceleration is zero �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 0�, this leads to Equations 14, 

15 and 16. 
 
Equation 14: 

𝑀𝑀�
𝑑𝑑𝑣𝑣
𝑑𝑑𝑑𝑑
� = 0 =  𝑀𝑀𝑀𝑀 − 𝑘𝑘𝑣𝑣𝑇𝑇 

 
Equation 15: 

𝑀𝑀𝑀𝑀 = 𝑘𝑘𝑣𝑣𝑇𝑇  
 
Equation 16: 

𝑘𝑘 =
𝑀𝑀𝑀𝑀
𝑣𝑣𝑇𝑇

 

 
As Neodymium magnets are very strong, when dropped though a copper pipe, they attain terminal velocity within 
5mm. The terminal velocity of the magnet falling through a pipe at different temperatures will be measured practically 
and inputting this data into Equation 16 will allow experimental k values to be calculated. 
The following section presents the experimental setups used to determine the constants required to calculate the the-
oretical values of k and measure terminal velocity of the magnet falling through the pipe at different temperatures. 
 

Laboratory Setup and Experimental Procedure 
 
In my experiment, the magnet was dropped through a copper pipe, which was held in a vertical position on a retort 
stand. The motion of the magnet through the copper pipe at various temperatures was monitored using seven pickup 
coils wrung around the pipe and an oscilloscope. The temperature of the copper pipe was lowered by submerging it 
in dry ice, and increased with a hair dryer. The finer details of the experiment and procedures are presented in follow-
ing sections: 
 
Technical Data of Equipment Used 
 
Cooper Pipe:  
The copper pipe was 150cm long with inner diameter 22.4 ±0.1mm and outer diameter 25.4 ±0.1mm. As preliminary 
testing showed that the magnet reached terminal velocity within fal, the pipe was cut into a more convenient length of 
75cm. 
 
Magnet: 
A N45 grade neodymium cylindrical magnet with diameter 20mm, height 25mm and weight 71g was purchased from 
AMF Magnetics [18]. The magnet was kept away from other magnetic material to help maintain its magnetic proper-
ties. 
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Pickup Coils: 
To detect the position of the magnet inside the pipe, seven pick-up coils of 20±2 turns made of enamel covered copper 
wire of thickness 0.3 mm were wrung around the pipe, see figure 5a. The coils were closely packed onto the pipe, 
each having a width of 0.5 cm, and were secured to the pipe using both parafilm and electrical tape. The positive ends 
of the coils and the negative ends were all joined in parallel. Finally, an insulating elastomeric hose was cut and 
wrapped around the pipe, see figure 5b, and was fixed in position using electrical tape. 

Figure 5. a) Positioning of pick-up coils 
  b) Experimental setup in laboratory 
 
Oscilloscope: 
An oscilloscope, Tenma 72-10510, was used to measure the induced emf in the pickup coils. The emf vs. time graphs 
were stored as BITMAP files and processed using the methods described in Section 4c. 
 
Digital infrared thermometer: 
A non-contact, digital infrared thermometer, Ozito IFT-100, working range: 223-373K, uncertainty: ±2K, was used 
to measure the temperature of the copper pipe. A small section of the copper pipe was left exposed at the top and 
bottom. The thermometer was used to measure the temperature of both sections. 
 
Heating and Cooling the Pipe 
The pipe was cooled to a temperature of about 233K using dry ice. This was achieved by filling the pipe with dry ice 
and placing the filled pipe on a layer of dry ice within a cardboard box, figure 6. Following this, the pipe was covered 
with a second layer of dry ice. To heat the pipe, a hair dryer was held above the end of the pipe. This thoroughly 
heated the air within the pipe, heating the copper pipe uniformly. 
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Figure 6. Cooling of the copper pipes with dry ice 
 
c) Experimental Procedure 
The pipe was positioned on a retort stand using two clamps, and was made to be vertical using a spirit level, Figure 
5b. Following this, the clamps were loosened, the pipe was removed from the setup and cooled using dry ice, see 
Section 2b. After the pipe reached a temperature of about 233K, the pipe was promptly removed from the dry ice, 
taking care to remove the dry ice within the pipe, and clamped back on to the retort stand. Then the two ends of the 
pickup coils were connected to Channel 1 of the oscilloscope see figure 5a, using two alligator clips and the oscillo-
scope was switched ON. After waiting 20 minutes for the oscilloscope to warm up, the setup was ready and the trials 
could begin. The temperature of pipe was measured and recorded. Quickly after measuring the temperature, the oscil-
loscope’s graph was reset and the magnet was dropped down the pipe. Once the magnet exited the pipe, the oscillo-
scope’s graph was paused and a screenshot of the graph was saved onto the attached USB drive with the filename 
being the temperature of the pipe. A representative graph saved from the oscilloscope is shown in figure 7. Following 
this, the temperature of the pipe was allowed to rise with the collection of data at regular intervals. Once the pipe was 
close to room temperature, the pipe was heated to 363K and was allowed to cool with the collection of data at regular 
intervals. This process of conducting trials at regular intervals produced multiple sets of trials with temperatures rang-
ing from 253 to 353K. 

 
Figure 7. Example of emf vs. time graph produced by the oscilloscope, T = 276K 
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Data collection, processing and calculations 
 
To calculate the theoretical values of the dragging constant at different temperatures, the magnetic moment of the 
magnet and the conductivity of the pipe at different temperatures need to be determined. 
 
a) Determining the magnetic moment (m) of the magnet: 
The magnetic moment is a quantity of a magnet that determines the magnitude of force that it can exert on an electric 
current [19]. The magnetic moment of the magnet used in this study was measured using smartphone with Android® 
OS as reported in a research paper published in 2015 [20]. A more in-depth explanation of the procedure, data and 
calculations used to determine 𝑚𝑚 can be found in Appendix b. The final result was 𝑚𝑚 = 7.5 ± 0.1  Am2. 
 
b) Determining the conductivity of the copper pipe (𝑣𝑣) at different temperatures 
As detailed in Appendix c and [21], the resistivity of a conductor at different temperatures can be found using Equation 
17. 
 
Equation 17: 

𝑧𝑧𝑓𝑓 = 𝑧𝑧𝑖𝑖 �1 + 𝛼𝛼�𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑖𝑖�� ; 
 
where 𝑧𝑧𝑖𝑖 and 𝑧𝑧𝑓𝑓 are the resistivity of the conductor at the reference temperature 𝑇𝑇𝑖𝑖  and final temperature 𝑇𝑇𝑓𝑓   and 𝛼𝛼 is 
the temperature coefficient of the conductor. 
Since 𝑣𝑣 = 1

𝜌𝜌
 [21], Equation 17 can be used to calculate the conductivity at different temperatures, table 1. 

 
Table 1. Calculating the conductivity of copper at different temperatures 

 
Sample calculation of the conductivity of copper at 276K 
According to Wikipedia [21], the resistivity of copper at 293K was 1.68 × 10−8 Ωm and the temperature coefficient 
was 0.00404𝐾𝐾−1. Therefore, 

Temperature 
(𝑇𝑇𝐹𝐹) (K) 

Resistivity (𝑧𝑧)(Ωm) Uncertainty Conductivity (𝑣𝑣)(S/m) Uncertainty 

253 1.41 × 10−8 

1.36 × 10−10 

7.10 × 107 0.068 × 107 
270 1.52 × 10−8 6.56 × 107 0.058 × 107 
276 1.56 × 10−8 6.39 × 107 0.055 × 107 
283 1.61 × 10−8 6.20 × 107 0.052 × 107 
288 1.65 × 10−8 6.08 × 107 0.050 × 107 
293 1.68 × 10−8 5.95 × 107 0.048 × 107 
303 1.75 × 10−8 5.72 × 107 0.044 × 107 
311 1.80 × 10−8 5.55 × 107 0.042 × 107 
318 1.85 × 10−8 5.41 × 107 0.040 × 107 
323 1.88 × 10−8 5.31 × 107 0.038 × 107 
328 1.92 × 10−8 5.21 × 107 0.037 × 107 
343 2.02 × 10−8 4.95 × 107 0.033 × 107 
348 2.05 × 10−8 4.87 × 107 0.032 × 107 
353 2.09 × 10−8 4.79 × 107 0.031 × 107 

Volume 10 Issue 2 (2021) 
IB Paper

ISSN: 2167-1907 www.JSR.org 9



 

 

Figure 8. Analysing the voltage vs. time graphs produced by the oscilloscope 
 
𝑧𝑧 𝑎𝑎𝑑𝑑 276 𝐾𝐾 = 1.68 × 10−8 × �1 + 0.00404((276 ± 2) − 293)� 
                 = 1.68 × 10−8 × (0.93132 ± 0.00808) 
                 = 1.56 × 10−8 ± 0.0136 × 10−8Ωm 
Since 𝑣𝑣 = 1

𝜌𝜌
: 

𝑣𝑣 𝑎𝑎𝑑𝑑 276 𝐾𝐾 =
1

1.56 × 10−8 ± 0.86%
 

                 = 6.39 × 107 ± 0.055 × 107𝑆𝑆/𝑚𝑚  
 
c) Determining the terminal velocity of the magnet at different temperatures 
As described in the Experimental Procedure, the motion of the magnet through the pipe was recorded at temperatures 
from 253 to 353K. The oscilloscope graphs were processed to produce displacement vs. time data of the magnet. The 
displacements vs. time curves were fitted to calculate 𝑣𝑣𝑇𝑇  at various temperatures. 
 
Processing of the graphs produced by the oscilloscope: 
The voltage versus time BITMAP images produced by the oscilloscope were analysed on a bitmap viewing program, 
Microsoft Paint. Using this program, the time taken to reach the centre of each coil was determined. The position of 
the graph where the voltage first rapidly changed from positive to negative as shown by vertical red line, was taken 
as 𝑑𝑑 = 0. From this reference point, the number of spaces until the next rapid change was counted and this process 
was repeated for all six positions, figure 8. The uncertainty for all times is half of the smallest division and since the 
oscilloscope has a step size of 0.08 seconds, the uncertainty is ±0.04 seconds. This processing procedure produced a 
table of the time taken by the magnet to reach 7 positions along the pipe, table 2. 
 
Table 2. Example of data produced from processing of the oscilloscope graphs at 293 K 

Temperature (K) Position (m) (±0.006) Time taken to reach position (s) (±0.04) 
Trial 1 Trial 2 

293±2 
 

0.000 0.00 0.00 
0.065 0.96 0.96 
0.185 2.80 2.80 
0.305 4.56 4.64 
0.425 6.48 6.56 
0.545 8.24 8.40 
0.665 10.08 10.24 
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The displacement vs. time data for all trials of each temperature was averaged and the uncertainty in these values was 
taken to be the standard deviation of the trials. If the standard deviation in the value was below the measured uncer-
tainty of ±0.04s, the measured uncertainty was used instead. The uncertainty in the displacement of the magnet was 
taken to be ±0.5mm as the uncertainty in the ruler used to position the pickup coils was ±0.5mm. The full displacement 
vs. time data is plotted on figure 9, while the data table can be found in Appendix d. 

Figure 9. Processed Data – Vertical displacement of magnet vs. time at different temperatures 

Figure 10. Observation that the emf induced within the coil increased with temperature 
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While analysing the graphs produced by the oscilloscope, I observed that as the temperature of the pipe increased, the 
width of the spikes on the oscilloscope decreased and the height increased. This is in line with my hypothesis as 
increasing the temperature of the pipe would increase resistivity which would decrease the eddy currents, increasing 
the terminal velocity. As a result, the rate of change of magnetic flux experienced by the coils was higher and thus the 
emf induced within the pickup coils was higher, figure 10. 
 
Sample Calculation of Terminal Velocity 𝑣𝑣𝑇𝑇  (Temperature = 270K) 
𝑣𝑣𝑇𝑇 was determined by plotting the displacement of the magnet over time and using a graphing package to find the 
slope of the best-fit line, see figure 11. The 𝑑𝑑 = 0 data point was not included during this process, as the magnet had 
not yet reached terminal velocity. 
 

Figure 11. Displacement of magnet vs. time to calculate terminal velocity with max and min trend lines 
 
From figure 11, the terminal velocity of the magnet is 𝑣𝑣𝑇𝑇 = 0.0564𝑚𝑚𝑠𝑠−1. To find the uncertainty in the experimental 
value of 𝑣𝑣𝑇𝑇, max slope and min slope lines were plotted and used as follows; 
uncertainty  =  max 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−min 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2
= 0.0613−0.0517

2
= 0.0048 = ± 0.005 𝑚𝑚𝑠𝑠−1 (1 𝑠𝑠. 𝑓𝑓. ) .                                                                      

∴ 𝑣𝑣𝑇𝑇 = 0.056 ±  0.005 𝑚𝑚𝑠𝑠−1 (the place value of the vale of 𝑣𝑣𝑇𝑇 must match the place value of its uncertainty).  
The full terminal velocity data of the magnet at different temperatures can be seen in table 3. Interestingly, the 
displacement vs time best fit lines have very high R2 values, indicating that the variation in 𝑣𝑣𝑇𝑇 within trials at one 
temperature is very small and that the velocity of the magnet through the pipe is constant, hence the temperature and 
other physical properties throughout the pipe were uniform. 
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Table 3. Terminal velocity of magnet at various temperatures 
 

d) Calculating the theoretical and experimental dragging constants at different temperatures 
Sample Calculation of Theoretical k at T = 276K 
The theoretical values for k will be calculated using Equation 11. 
 
Equation 11: 

𝑘𝑘 =
15

1024
× 𝜇𝜇02𝑚𝑚2𝑣𝑣 × �

1
𝑎𝑎3

−
1
𝑏𝑏3
� 

∴ k at 276 K = 15×�4π×10−7�
2

×(7.5±0.1)2×(6.39±0.055)×107

1024
× � 1

�(11.2 ±0.05)×10−3�
3 −

1

�(12.7 ±0.05)×10−3�
3�  

                     = 8.31 × 10−5 ± �2 × 0.1
7.5

× 100% + 0.055
6.39

× 100%� × �7.12 × 105 ± �3 × 0.05
11.2

× 100%� − 4.88 ×

105 ± �3 × 0.05
12.7

× 100%��  

                   = 8.31 × 10−5 ± (3.527%) × �7.12 × 105 ± (1.339%) − 4.88 × 105 ± (1.181%)�  
                   = 8.31 × 10−5 ± (3.527%) × (2.24 × 105 ± (0.2 × 105))  
                   =  18.68 ± �3.527% + 0.2×105

2.24×105
× 100%�   

                   =  18.68 ± (10.36%)   
                   =  18.68 ± (1.94) kgs−1  
∴ kat 276K =  19 ± 2 kgs−1  
Sample Calculation of Experimental k at T = 276K 
The experimental values for k will be calculated using Equation 16. 
 
Equation 16: 

𝑘𝑘 =
𝑀𝑀𝑀𝑀
𝑣𝑣𝑇𝑇

 

∴ 𝑘𝑘 𝑎𝑎𝑑𝑑 276 𝐾𝐾 = 0.071×9.81
0.059 ±0.002

  

= 11.81 ± �0.002
0.059

× 100%�  
∴ 𝑘𝑘 𝑎𝑎𝑑𝑑 276 𝐾𝐾 = 11.8 ± 0.4 𝑘𝑘𝑀𝑀𝑠𝑠−1  

Temperature 
(T) ±2 (K) 

No. of tri-
als (n) 

Equation of Line of Best Fit Correlation Coef-
ficient (r2) 

Terminal Velocity (vT) (ms-1) 

253 2 d = 0.0532t + 0.007 0.9996 0.053 ±0.001 
270 2 d = 0.0564t + 0.0107 0.9995 0.056 ±0.005 
276 2 d = 0.0591t + 0.0067 0.9999 0.059 ±0.002 
283 4 d = 0.0613t + 0.0071 0.9999 0.061 ±0.002 
288 9 d = 0.0632t - 0.0001 0.9999 0.063 ±0.002 
293 10 d = 0.0647t + 0.0026 0.9999 0.065 ±0.002 
303 4 d = 0.0679t + 0.0046 0.9999 0.068 ±0.002 
311 3 d = 0.0718t + 0.0035 0.9999 0.072 ±0.003 
318 2 d = 0.073t + 0.0058 0.9999 0.073 ±0.002 
323 2 d = 0.0733t + 0.0031 0.9999 0.073 ±0.002 
328 2 d = 0.0752t + 0.0048 0.9999 0.075 ±0.003 
343 2 d = 0.0772t + 0.0062 0.9999 0.077 ±0.003 
348 3 d = 0.0793t + 0.0018 0.9999 0.079 ±0.003 
353 2 d = 0.081t + 0.0075 0.9999 0.081 ±0.002 
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The theoretical and experimental dragging constants at each temperature are presented in table 4 and are plotted in 
figure 12. The error bars shown on figure 12 represent the absolute uncertainty in k and T. 
 
Table 4. Experimental and theoretical k at temperatures ranging from 253 to 353K 

Temperature T (K)(±2) Experimental k 
(kgs-1) 

Theoretical k 
(kgs-1) 

253 13.1±0.2 21±2 
270 12±1 19±2 
276 11.8±0.4 19±2 
283 11.4±0.4 18±2 
288 11.1±0.4 18±2 
293 10.7±0.3 17±2 
303 10.2±0.3 17±2 
311 9.7±0.4 16±2 
318 9.5±0.3 16±2 
323 9.5±0.3 16±2 
328 9.3±0.4 15±2 
343 9.0±0.4 14±1 
348 8.8±0.3 14±1 
353 8.6±0.2 14±1 

 

Figure 12. Experimental and theoretical dragging constant vs. temperature of copper pipe 
 

Evaluation 
 
As tabulated in table 3, the terminal velocity of the magnet increases as temperature of the copper pipe it is falling 
through increases, supporting my hypothesis that an increase in the pipe’s temperature will increase its resistance, 
leading to a decrease in eddy current flow and hence reducing the retarding force exerted by the pipe on the magnet. 
From figure 12, it is evident that both the theoretically calculated and the experimentally measured 𝑘𝑘 follow a very 
similar trend; both decrease with an increase in the pipe’s temperature, supporting the hypothesis that k depends on 
the pipe’s resistance. Moreover, the mathematical model used successfully models the effect of pipe temperature on 
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𝑘𝑘 and thus enables the prediction of the retarding force experienced by a magnet falling through a pipe at different 
temperatures. However, figure 12 also shows that the experimentally calculated k is much lower than the theoretical 
k, indicating significant systematic error. Also, the experimentally observed data forms a quite smooth line with little 
zagging, indicating minimal random error. 
  
a) Systematic Errors 
 
It is clear from Equation 11 that the dragging constant (𝑘𝑘) is dependent on 𝑚𝑚, 1

a3
− 1

b3
 and 𝑣𝑣. It follows that the large 

systematic error should be a result of errors and inaccuracies in one or combination of these three variables. 
 
i. The magnetic moment (𝑚𝑚) 

From equation 11, 𝑘𝑘 ∝ 𝑚𝑚2. As a result, inaccuracies in the experimentally measured magnetic moment will 
have a large impact on the theoretical dragging constants. In this report, the magnetic moment of the magnet 
was determined using a procedure described in Section 4a and Appendix b. The experimentally calculated 
magnetic moment was 7.5Am2, which is similar to the value calculated from its residual flux density. As a 
result, this cannot be the sole cause of the large systematic error. In addition, it was observed that magnet 
warmed up considerably when moving through the hot pipe, however this should not have impacted its mag-
netic properties as N45 magnets have a working temperature of ≤ 353K [22]. 
 

ii. The inner and outer radiuses of the pipe � 1
𝑎𝑎3
− 1

𝑏𝑏3
� 

From Equation 11, 𝑘𝑘 ∝ � 1
a3
− 1

b3
�. As a result, increases in the outer radius (b) and decreases in the inner 

radius (a) of the pipe will increase the theoretical dragging constant. The copper coils that were wrung around 
the pipe would slightly increase the outer radius, and a result the theoretical dragging constants should be 
slightly higher. Moreover, when heated copper expands slightly [16], which would decrease the inner radius 
and increase the outer radius. Together both of these errors would lead to a slight increase in � 1

a3
− 1

b3
�, which 

in turn means that the theoretical dragging constants are a little smaller than what they should be. However, 
since the magnitude of this error is so small, it is negligible. 
 

iii. The conductivity of the pipe (𝑣𝑣) 
From equation 11, 𝑘𝑘 ∝ 𝑣𝑣. The conductivity of a copper pipe decreases with the presence of impurities, and 
the small amounts of phosphorus present within the pipe [23] will significantly decrease (by ≈ 35%) its 
conductivity [24, Fig. 1]. This large decrease in conductivity would cause a significant decrease in the theo-
retical dragging constants, significantly reducing the gap between the theoretical and experiment dragging 
constants.  
Equation 11 can be written as Equation 18. 
 
Equation 18: 

𝑘𝑘 = 𝑘𝑘′𝑣𝑣; 
where 𝑘𝑘′ is a constant equal to 15

1024
× 𝜇𝜇02𝑚𝑚2 × � 1

𝑎𝑎3
− 1

𝑏𝑏3
� 

This leads to Equation 19. 
Equation 19: 

∴
1
𝑘𝑘

=
1
𝑘𝑘′

×
1
𝑣𝑣

 

From Equation 17, the inverse of the conductivity at different temperatures can be expressed as the following 
equation. 
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Equation 20: 
1
𝑣𝑣𝑓𝑓  

= 𝑧𝑧𝑖𝑖 + 𝛼𝛼𝑧𝑧𝑖𝑖∆𝑇𝑇 

∴
1
𝑘𝑘

=
1
𝑘𝑘′

× (𝑧𝑧𝑖𝑖 + 𝛼𝛼𝑧𝑧𝑖𝑖∆𝑇𝑇) 

Leading to the following equation. 
 
Equation 21: 

∴
1
𝑘𝑘

=
𝑧𝑧𝑖𝑖
𝑘𝑘′

+
𝛼𝛼𝑧𝑧𝑖𝑖
𝑘𝑘′

× Δ𝑇𝑇 

From Equation 21, we can deduce that 1
𝑘𝑘
 will linearly change with temperature. As a result graphing 1

𝑘𝑘
 against 

T will facilitate quantitative analysis of the impact of decreasing the conductivity. The theoretical k values at 
different temperatures, considering the conductivity of pipe is 65% of a pipe made up of pure copper, were 
calculated and along with the experimental k values were inversed and plotted against temperature with ap-
propriate error bars, figure 13. The equations and correlation coefficients of the best-fit lines are presented in 
table 5. 

Figure 13. Inverse of dragging constant vs. temperature of copper pipe 
 

Table 5. Inverse of dragging constant vs. temperature line of best fit equations 

 Equation of Line of Best Fit 
Correlation 

Coefficient (𝑟𝑟2) 

Experimental 
1
𝑘𝑘

= 0.00041𝑇𝑇 − 0.02752 0.98259 

Theoretical (Impure copper) 
1
𝑘𝑘

= 0.00036𝑇𝑇 − 0.01630 1.00000 

Theoretical (Pure copper) 
1
𝑘𝑘

= 0.00023𝑇𝑇 − 0.01059 1.00000 
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Looking at figure 13, the experimental k data is within the uncertainty range of the theoretical k data that takes the 
reduced conductivity into account. Moreover the slope of the experimental data 0.00041 is very similar to that of the 
theoretical data that takes the reduced conductivity into account 0.00036. 
 
b) Random Errors 
 
As discussed earleir, the small amount of zagging in the observed k vs. temperature data indicates the presence of 
small random error, which is further supported by high R2 value (0.98259) of the 1

𝑘𝑘
 vs. temperature data linear best fit, 

figure 13. The possible source of random errors and their impact on the results are discussed below: 
 
i. Imprecise thermometer 

The thermometer used had low precision, and this along with the high rate of temperature change (especially 
at temperatures below 273K and above 323K) resulted in a small number of trials for some of the temperature 
ranges, leading to some random error. 
 

ii. Water droplets within the pipe 
Water droplets present within the pipe when cooled to low temperatures, due to the humidity of the labora-
tory, may have small impact on the terminal velocity of the magnet. However, due to the apparent lack of 
discontinuities between the data at low and high temperatures it may be concluded that the impact of water 
droplets within the pipe is negligible. 
 

iii. Position of the copper pipe 
It is possible that the position of copper pipe may have changed slightly in-between trials, and hence was not 
perfectly vertical in some trials. The terminal velocity in those trials will be slightly lower than expected, in 
turn leading to unexpected increases in the value of the dragging constant in some trials. 
 

c) Improvements and Extensions 
 
i. Using a copper pipe with known conductivity: 

As discussed in Section 5a. this investigation’s major flaw is the unknown conductivity of the copper pipe 
used. This flaw is the most probable reason for the large systematic error. Using a copper pipe with known 
conductivity will eliminate this systematic error, ensuring the validity of the mathematical model used, and 
hence allowing the hypothesis to be tested more rigourously.  
 

ii. Using a magnetometer to accurately measure the magnetic field 
As discussed in Section 5a. a possible cause of the significant systematic error observed in Figure 12 is 
inaccuracy in the value of 𝑚𝑚. Using a magnetometer rather than a smartphone will improve the accuracy of 
the magnetic field measurements, improving the accuracy of 𝑚𝑚, and hence will reduce the systematic error. 
 

iii. Greater number of trials at low and high temperatures 
As evident from Table 3, for many of the temperature ranges only two trials were performed. Increasing the 
number of trials will limit the impact of random errors, increasing the precision of the experimental data. 
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Conclusion 
 
The equipment readily available in the school laboratory and materials available from local retailers were successfully 
used to understand the effect of temperature on eddy currents. This study has clearly established that the terminal 
velocity of magnet falling through a copper pipe is proportional to pipe’s temperature.  

In addition, a literature model of the retarding force exerted on a magnet falling through a conductive pipe 
was used to quantitatively explain the change in dragging constant with temperature. However, its success was limited 
due to the presence of large systematic error, possibly caused by impurities in the copper pipe that would have signif-
icantly reduced its conductivity. As a result, further scientific study is needed to assess the accuracy of the mathemat-
ical model. 

Ultimately, this study establishes that temperature, i.e. the variable weather around the globe, plays a signif-
icant role and needs to be considered when designing eddy current based machines. such as magnetic brakes in high-
speed trains and maglev transportation. More specifically, it experimentally shows that in the temperature range -20 
to 80°C the drag force caused by eddy currents varies from 13.1 to 8.6kgs-1. Consequently, eddy current based ma-
chines in some of the coldest regions of the world, such as Canada, will be far more efficient than if they were used 
in the hottest regions of the world, for instance Burkina Faso. Importantly however, actual linear eddy current brakes 
utilise the rail which is often made of stainless steel a material that has a considerably lower thermal and electrical 
conductivity which will reduce the impact of temperature on the drag force caused by the linear eddy current brake. 
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a) Full derivation of the formulas taken from the YouTube video [13] 
 

Expression for the magnetic field of a magnetic dipole: 
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Equation A1: 

𝐵𝐵�⃗ =
𝜇𝜇0
4𝜋𝜋

× �
3 × (𝑚𝑚��⃗ ∙ 𝑟𝑟) × 𝑟𝑟

𝑟𝑟5
−
𝑚𝑚��⃗
𝑟𝑟3
� ; 

where 𝜇𝜇0 is the magnetic permeability of free space, 𝑚𝑚 is the magnetic moment and 𝑟𝑟 is an arbitrary vector represent-
ing the position experiencing the magnetic field with respect to the position of the magnetic dipole with cords (𝑥𝑥, 𝑦𝑦, 
𝑧𝑧) ∴ r = �x2 + y2 + z2 
We have chosen 𝑚𝑚��⃗  to be in the 𝑧𝑧 direction, figure a. 

Figure a. Visualising the arbitrary vector 𝑟𝑟 with respect to the vector 𝑚𝑚��⃗  

So 𝑚𝑚��⃗ = 𝑚𝑚 × �̂�𝑧 
As a result, 

𝑚𝑚��⃗ ∙ 𝑟𝑟 
= 𝑚𝑚 × �̂�𝑧 ∙ 𝑟𝑟 

= 𝑚𝑚𝑧𝑧 
We want to find x, y and z components of magnetic field 

𝐵𝐵𝑥𝑥 = 𝐵𝐵�⃗ ∙ 𝑥𝑥� =
𝜇𝜇0
4𝜋𝜋

× �
3 × (𝑚𝑚𝑧𝑧) × 𝑟𝑟 ∙ 𝑥𝑥�

𝑟𝑟5
−
𝑚𝑚��⃗ ∙ 𝑥𝑥�
𝑟𝑟3

� 

As 𝑚𝑚 ����⃗  is in 𝑧𝑧 direction it is perpendicular to 𝑥𝑥� 
∴ 𝑚𝑚��⃗ ∙ 𝑥𝑥� = 0 

∴ 𝐵𝐵𝑥𝑥 =
𝜇𝜇0𝑚𝑚
4𝜋𝜋

×
3 × 𝑥𝑥 × 𝑧𝑧

𝑟𝑟5
 

Similarly,  

𝐵𝐵𝑦𝑦 = 𝐵𝐵�⃗ ∙ 𝑦𝑦� =
𝜇𝜇0
4𝜋𝜋

× �
3 × (𝑚𝑚𝑧𝑧) × 𝑟𝑟 ∙ 𝑦𝑦�

𝑟𝑟5
−
𝑚𝑚��⃗ ∙ 𝑦𝑦�
𝑟𝑟3

� 

As 𝑚𝑚 ����⃗  is in 𝑧𝑧 direction it is perpendicular to 𝑦𝑦� 
∴ 𝑚𝑚��⃗ ∙ 𝑦𝑦� = 0 

∴ 𝐵𝐵𝑦𝑦 =
𝜇𝜇0𝑚𝑚
4𝜋𝜋

×
3 × 𝑦𝑦 × 𝑧𝑧

𝑟𝑟5
 

On the other hand, 

𝐵𝐵𝑧𝑧 = 𝐵𝐵�⃗ ∙ �̂�𝑧 =
𝜇𝜇0
4𝜋𝜋

× �
3 × (𝑚𝑚𝑧𝑧) × 𝑟𝑟 ∙ �̂�𝑧

𝑟𝑟5
−
𝑚𝑚��⃗ ∙ �̂�𝑧
𝑟𝑟3

� 

𝐵𝐵𝑧𝑧 =
𝜇𝜇0
4𝜋𝜋

× �
3 × 𝑚𝑚𝑧𝑧2

𝑟𝑟5
−
𝑚𝑚
𝑟𝑟3
� 
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      =
𝜇𝜇0𝑚𝑚
4𝜋𝜋

× �
3 × 𝑧𝑧2

𝑟𝑟5
−

1
𝑟𝑟3
� 

Now these formulas will be more helpful if we convert them into cylindrical coordinates, figure b): 

Figure b. Visualising the cylindrical coordinates that are to be used 

𝑟𝑟 = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 
𝑟𝑟 = �𝑧𝑧2 + 𝑧𝑧2 ,𝑧𝑧 = �𝑥𝑥2 + 𝑦𝑦2 
𝐵𝐵�⃗ = 𝐵𝐵𝜌𝜌 × 𝑧𝑧� + 𝐵𝐵𝑧𝑧 × �̂�𝑧 + 𝐵𝐵𝜙𝜙 × 𝜙𝜙� 

Due to the symmetry of the cylinder, 𝐵𝐵𝜙𝜙 × 𝜙𝜙� = 0 
∴ 𝐵𝐵�⃗ = 𝐵𝐵𝜌𝜌 × 𝑧𝑧� + 𝐵𝐵𝑧𝑧 × �̂�𝑧 

𝐵𝐵𝜌𝜌 = �(𝐵𝐵𝑥𝑥)2 + �𝐵𝐵𝑦𝑦�
2
 

𝐵𝐵𝜌𝜌 = ��
𝜇𝜇0𝑚𝑚
4𝜋𝜋

×
3 × 𝑥𝑥 × 𝑧𝑧

𝑟𝑟5
�
2

+ �
𝜇𝜇0𝑚𝑚
4𝜋𝜋

×
3 × 𝑦𝑦 × 𝑧𝑧

𝑟𝑟5
�
2

 

𝐵𝐵𝜌𝜌 = ��
3𝜇𝜇0𝑚𝑚𝑧𝑧
4𝜋𝜋𝑟𝑟5

�
2

× (𝑥𝑥2 + 𝑦𝑦2) 

𝐵𝐵𝜌𝜌 =
𝜇𝜇𝑚𝑚0
4𝜋𝜋

×
3𝑧𝑧
𝑟𝑟5

 × �(𝑥𝑥2 + 𝑦𝑦2) 

𝐵𝐵𝜌𝜌 =
𝜇𝜇𝑚𝑚0
4𝜋𝜋

×
3𝑧𝑧𝑧𝑧

(𝑧𝑧2 + 𝑧𝑧2)
5
2

  

𝐵𝐵𝑧𝑧 =
𝜇𝜇0𝑚𝑚
4𝜋𝜋

× �
3 × 𝑧𝑧2

𝑟𝑟5
−

1
𝑟𝑟3
� 

𝐵𝐵𝑧𝑧 =
𝜇𝜇0𝑚𝑚
4𝜋𝜋

× �
3 × 𝑧𝑧2

(𝑧𝑧2 + 𝑧𝑧2)
5
2
−

1

(𝑧𝑧2 + 𝑧𝑧2)
3
2
� 
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Now with 𝐵𝐵𝜌𝜌 and 𝐵𝐵𝑧𝑧 we can find the emf using Faraday’s law of induction: 

𝜀𝜀 =
−𝑑𝑑ϕ𝐵𝐵

𝑑𝑑𝑑𝑑
 

Φ𝐵𝐵 = �𝐵𝐵�⃗ ∙ 𝑑𝑑𝐴𝐴 

Figure c. Visualising the significance of 𝑑𝑑𝐴𝐴 

𝜙𝜙𝐵𝐵 = �𝐵𝐵𝑧𝑧𝑑𝑑𝐴𝐴 

𝜙𝜙𝐵𝐵 = � 𝐵𝐵𝑧𝑧2𝜋𝜋𝑧𝑧𝑑𝑑𝑧𝑧
𝑅𝑅

0
 

 
 
 

Figure d. Visualising the meaning of 𝑧𝑧 and 𝑑𝑑𝑧𝑧 
 

𝜙𝜙𝐵𝐵 = �
𝜇𝜇0𝑚𝑚
4𝜋𝜋

× �
3𝑧𝑧2

(𝑧𝑧2 + 𝑧𝑧2)
5
2
−

1

(𝑧𝑧2 + 𝑧𝑧2)
3
2
� × 2𝜋𝜋𝑧𝑧 𝑑𝑑𝑧𝑧

𝑅𝑅

0
 

𝜙𝜙𝐵𝐵 =
𝜇𝜇0𝑚𝑚
4𝜋𝜋

× 𝜋𝜋 × � �
3𝑧𝑧2

(𝑧𝑧2 + 𝑧𝑧2)
5
2
−

1

(𝑧𝑧2 + 𝑧𝑧2)
3
2
� × 2𝑧𝑧𝑑𝑑𝑧𝑧

𝑅𝑅

0
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𝜙𝜙𝐵𝐵 =
𝜇𝜇0𝑚𝑚

4
× � �

3𝑧𝑧2

(𝑧𝑧2 + 𝑧𝑧2)
5
2
−

1

(𝑧𝑧2 + 𝑧𝑧2)
3
2
� × 2𝑧𝑧𝑑𝑑𝑧𝑧

𝑅𝑅

0
 

To simplify this integral, the substitution 𝑢𝑢 = 𝑧𝑧2 + 𝑧𝑧2 will be used. 
Derivating 𝑢𝑢 with respect to 𝑧𝑧: 𝑑𝑑𝑢𝑢 = 2𝑧𝑧𝑑𝑑𝑧𝑧 
Solving the limits, 𝑧𝑧 = 0 → 𝑢𝑢 = 𝑧𝑧2 and 𝑧𝑧 = 𝑅𝑅 → 𝑢𝑢 = 𝑅𝑅2 + 𝑧𝑧2 
Now, 

𝜙𝜙𝐵𝐵 =
𝜇𝜇0𝑚𝑚

4
× � �

3𝑧𝑧2

(𝑢𝑢)
5
2
−

1

(𝑢𝑢)
3
2
� 𝑑𝑑𝑢𝑢

𝑅𝑅2+𝑧𝑧2

𝑧𝑧2
 

𝜙𝜙𝐵𝐵 =
𝜇𝜇0𝑚𝑚

4
× � �3𝑧𝑧2 × 𝑢𝑢−

5
2 − 𝑢𝑢−

3
2� 𝑑𝑑𝑢𝑢

𝑅𝑅2+𝑧𝑧2

𝑧𝑧2
 

𝜙𝜙𝐵𝐵 =
𝜇𝜇0𝑚𝑚

4
× �3𝑧𝑧2 × �−

2
3
� × 𝑢𝑢−

3
2 − (−2)𝑢𝑢−

1
2�
𝑧𝑧2

𝑅𝑅2+𝑧𝑧2

 

𝜙𝜙𝐵𝐵 =
𝜇𝜇0𝑚𝑚

4
× �−2𝑧𝑧2𝑢𝑢−

3
2 + 2𝑢𝑢−

1
2�
𝑧𝑧2

𝑅𝑅2+𝑧𝑧2

 

𝜙𝜙𝐵𝐵 =
𝜇𝜇0𝑚𝑚

2
× �−𝑧𝑧2𝑢𝑢−

3
2 + 𝑢𝑢−

1
2�
𝑧𝑧2

𝑅𝑅2+𝑧𝑧2

 

𝜙𝜙𝐵𝐵 =
𝜇𝜇0𝑚𝑚

2
× ��

−𝑧𝑧2

(𝑅𝑅2 + 𝑧𝑧2)
3
2

+
1

(𝑅𝑅2 + 𝑧𝑧2)
1
2
� − �

−𝑧𝑧2

(𝑧𝑧2)
3
2

+
1

(𝑧𝑧2)
1
2
�� 

𝜙𝜙𝐵𝐵 =
𝜇𝜇0𝑚𝑚

2
× ��

−𝑧𝑧2

(𝑅𝑅2 + 𝑧𝑧2)
3
2

+
𝑅𝑅2 + 𝑧𝑧2

(𝑅𝑅2 + 𝑧𝑧2)
3
2
� − �

−1
𝑧𝑧

+
1
𝑧𝑧
�� 

𝜙𝜙𝐵𝐵 =
𝜇𝜇0𝑚𝑚

2
× ��

−𝑧𝑧2+𝑅𝑅2 + 𝑧𝑧2

(𝑅𝑅2 + 𝑧𝑧2)
3
2
�� 

𝜙𝜙𝐵𝐵 =
𝜇𝜇0𝑚𝑚

2
×

𝑅𝑅2

(𝑅𝑅2 + 𝑧𝑧2)
3
2
 

Now using Faraday’s daw of induction 

𝜀𝜀 =
−𝑑𝑑ϕ𝐵𝐵

𝑑𝑑𝑑𝑑
 

Using the chain rule, this can be changed to 𝜀𝜀 = −𝑑𝑑ϕ𝐵𝐵
𝑑𝑑𝑧𝑧

× 𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑

 where 𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑

 is actually just the velocity. 
So we get, 

𝜀𝜀 =
−𝑑𝑑ϕ𝐵𝐵

𝑑𝑑𝑧𝑧
× 𝑣𝑣 

Now we have to differentiate the magnetic flux with respect to z. 

ϕ𝐵𝐵 =
𝜇𝜇0𝑚𝑚𝑅𝑅2

2
× (𝑅𝑅2 + 𝑧𝑧2)

−3
2  

−𝑑𝑑ϕ𝐵𝐵

𝑑𝑑𝑧𝑧
=
−𝜇𝜇0𝑚𝑚𝑅𝑅2

2
× �−

3
2

(𝑅𝑅2 + 𝑧𝑧2)
−5
2 × (2𝑧𝑧)� 

−𝑑𝑑ϕ𝐵𝐵

𝑑𝑑𝑧𝑧
=

3𝜇𝜇0𝑚𝑚𝑅𝑅2𝑧𝑧
2

× �(𝑅𝑅2 + 𝑧𝑧2)
−5
2 � 

−𝑑𝑑ϕ𝐵𝐵

𝑑𝑑𝑧𝑧
=

3𝜇𝜇0𝑚𝑚
2

×
𝑅𝑅2𝑧𝑧

(𝑅𝑅2 + 𝑧𝑧2)
5
2
 

𝜀𝜀 =
3𝜇𝜇0𝑚𝑚

2
×

𝑅𝑅2𝑧𝑧

(𝑅𝑅2 + 𝑧𝑧2)
5
2

× 𝑣𝑣 

Now that we have expressions for the magnetic field and the emf we can calculate the force. 
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For simplicity we are going to fix the magnetic on the origin and point it in the positive z direction. The ring is moving 
with some velocity v in the z direction. From newtons 3rd law we know that the force exerted on the magnet due to the 

ring is the opposite of the force exerted on the ring due to the magnet. Additionally, the cylindrical symmetry of our 
problem means that the net force is in the z direction, figure e.  
Figure e. Demonstrating the direction of the net force 

𝑑𝑑𝑧𝑧
𝑚𝑚𝑎𝑎𝑚𝑚 = −�𝑑𝑑𝑑𝑑𝑥𝑥

𝑟𝑟𝑖𝑖𝑟𝑟𝑚𝑚 = −�𝑑𝑑�𝑑𝑑𝑙𝑙 × 𝐵𝐵�⃗ �
𝑧𝑧

= �𝑑𝑑𝐵𝐵𝜌𝜌𝑑𝑑𝑙𝑙 

� 𝑑𝑑𝐵𝐵𝜌𝜌𝑅𝑅𝑑𝑑𝜙𝜙
2𝜋𝜋

0
= 2𝜋𝜋𝑅𝑅𝑑𝑑𝐵𝐵𝜌𝜌 

From Ohm’s Law, figure f: 

𝐶𝐶𝑢𝑢𝑟𝑟𝑟𝑟𝐶𝐶𝐶𝐶𝑑𝑑 (𝑑𝑑) =
𝑉𝑉𝑉𝑉𝑙𝑙𝑑𝑑𝑎𝑎𝑀𝑀𝐶𝐶 (𝑉𝑉)

𝑅𝑅𝐶𝐶𝑠𝑠𝑅𝑅𝑠𝑠𝑑𝑑𝑎𝑎𝐶𝐶𝑅𝑅𝐶𝐶 (𝑅𝑅) 

Figure f. Ohm’s law 

∴ 𝑑𝑑 =
𝑉𝑉σA
𝑙𝑙

 

We want to find the total force acting on the magnet due to the pipe, we will do this by dividing the pipe into infini-
tesimally thin rings that each exert their own infinitesimally small element of force 𝑑𝑑𝑑𝑑. As each ring is infinitesimally 
thin they have cross sectional area of 𝑑𝑑𝐴𝐴. If we substitute the expression for I in, we get: 

𝑑𝑑𝑑𝑑 = 2𝜋𝜋𝑅𝑅𝐵𝐵𝜌𝜌𝑑𝑑𝑑𝑑 

= 2𝜋𝜋𝑅𝑅𝐵𝐵𝜌𝜌 �
𝜀𝜀𝑣𝑣𝑑𝑑𝐴𝐴
2𝜋𝜋𝑅𝑅

� 

= 𝐵𝐵𝜌𝜌𝜀𝜀𝑣𝑣𝑑𝑑𝐴𝐴 
𝜀𝜀 = 2𝜋𝜋𝑅𝑅𝑣𝑣𝐵𝐵𝜌𝜌    →    𝑑𝑑𝑑𝑑 = 2𝜋𝜋𝑅𝑅𝑣𝑣𝐵𝐵𝜌𝜌2𝑑𝑑𝐴𝐴 

𝐵𝐵𝜌𝜌 =
3𝜇𝜇𝑚𝑚0

4𝜋𝜋
×

𝑅𝑅𝑧𝑧

(𝑅𝑅2 + 𝑧𝑧2)
5
2

     →     𝑑𝑑𝑑𝑑 =
9𝜇𝜇02𝑚𝑚2

8𝜋𝜋
× 𝑣𝑣𝑣𝑣 ×

𝑅𝑅3𝑧𝑧2

(𝑅𝑅2 + 𝑧𝑧2)5
𝑑𝑑𝑧𝑧𝑑𝑑𝑟𝑟  
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To find the total force we need to integrate 𝑑𝑑𝑑𝑑 for the dimensions of the pipe, figure g. 

Figure g. Integrating for the dimensions of the pipe 
For 𝑅𝑅 we are going to integrate from 𝑎𝑎, the inner radius of the pipe, to 𝑏𝑏, the outer radius of the pipe. 
For simplicity we are going to assume the pipe is infinitely long and integrate z from −∞ to ∞.  

𝑑𝑑 = �𝑑𝑑𝑑𝑑 =
9𝜇𝜇02𝑚𝑚2

8𝜋𝜋
𝑣𝑣𝑣𝑣 × � �

𝑅𝑅3𝑧𝑧2

(𝑅𝑅2 + 𝑧𝑧2)5
𝑑𝑑𝑧𝑧𝑑𝑑𝑅𝑅

∞ 

−∞

𝑏𝑏

𝑎𝑎
  

               = �𝑑𝑑𝑑𝑑 =
9𝜇𝜇02𝑚𝑚2

8𝜋𝜋
𝑣𝑣𝑣𝑣 × � 𝑅𝑅3 × �

𝑧𝑧2

(𝑅𝑅2 + 𝑧𝑧2)5
𝑑𝑑𝑧𝑧𝑑𝑑𝑅𝑅

∞ 

−∞

𝑏𝑏

𝑎𝑎
  

 
First, we will begin by solving 𝛼𝛼.  
To do this, the following substitutions will be made: 

𝑧𝑧 = 𝑅𝑅 tan 𝜃𝜃 → 𝑑𝑑𝑧𝑧 = 𝑅𝑅 sec2 𝜃𝜃 𝑑𝑑𝜃𝜃 
𝑅𝑅2 + 𝑧𝑧2 = 𝑅𝑅2 + 𝑅𝑅2 tan2 𝜃𝜃 

                      = 𝑅𝑅2 × (1 + tan2 𝜃𝜃) 
      = 𝑅𝑅2 sec2 𝜃𝜃 

𝑅𝑅 tan 𝜃𝜃 → ∞ 𝑤𝑤ℎ𝐶𝐶𝐶𝐶 𝜃𝜃 →
𝜋𝜋
2

 𝑎𝑎𝐶𝐶𝑑𝑑 𝑅𝑅 tan𝜃𝜃 → −∞ 𝑤𝑤ℎ𝐶𝐶𝐶𝐶 𝜃𝜃 → −
𝜋𝜋
2

  

Therefore, 

𝛼𝛼 = �
𝑅𝑅2 tan2 𝜃𝜃𝑅𝑅 sec2 𝜃𝜃

𝑅𝑅10 sec10 𝜃𝜃
𝑑𝑑𝜃𝜃

𝜋𝜋
2 

−𝜋𝜋2

 

=
1
𝑅𝑅7

× �
tan2 𝜃𝜃
sec8 𝜃𝜃

𝑑𝑑𝜃𝜃
𝜋𝜋
2 

−𝜋𝜋2

 

=
1
𝑅𝑅7

× � sin2 𝜃𝜃 cos6 𝜃𝜃 𝑑𝑑𝜃𝜃
𝜋𝜋
2 

−𝜋𝜋2

 

=
1
𝑅𝑅7

× � (1 − cos2 𝜃𝜃) cos6 𝜃𝜃 𝑑𝑑𝜃𝜃
𝜋𝜋
2 

−𝜋𝜋2

 

=
1
𝑅𝑅7

× � cos6 𝜃𝜃 − cos8 𝜃𝜃 𝑑𝑑𝜃𝜃
𝜋𝜋
2 

−𝜋𝜋2

 

=
1
𝑅𝑅7

× �� cos6 𝜃𝜃 𝑑𝑑𝜃𝜃
𝜋𝜋
2 

−𝜋𝜋2

− � cos8 𝜃𝜃 𝑑𝑑𝜃𝜃
𝜋𝜋
2 

−𝜋𝜋2

� 

To solve this integral, we will define the function 𝑓𝑓(2𝐶𝐶) = ∫ cos2𝑟𝑟 𝜃𝜃 𝑑𝑑𝜃𝜃
𝜋𝜋
2 

−𝜋𝜋2
. 

Thus,  

𝛼𝛼 =
1
𝑅𝑅7

× �𝑓𝑓(6) − 𝑓𝑓(8)� 

𝛼𝛼 
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Now, using integration by parts, a recurrence equation for 𝑓𝑓(2𝐶𝐶) will be found. This equation will then be used to 
find a general expression for 𝑓𝑓(2𝐶𝐶), allowing us to solve for any n. 

𝑓𝑓(2𝐶𝐶) = � cos2𝑟𝑟 𝜃𝜃 𝑑𝑑𝜃𝜃
𝜋𝜋
2 

−𝜋𝜋2

= � cos2𝑟𝑟−1 𝜃𝜃 cos 𝜃𝜃 𝑑𝑑𝜃𝜃
𝜋𝜋
2 

−𝜋𝜋2

 

= [cos2𝑟𝑟−1 𝜃𝜃 sin 𝜃𝜃]
−𝜋𝜋2

𝜋𝜋
2 + � 𝑠𝑠𝑅𝑅𝐶𝐶 𝜃𝜃 (2𝐶𝐶 − 1) cos2𝑟𝑟−2 𝜃𝜃 sin𝜃𝜃 𝑑𝑑𝜃𝜃

𝜋𝜋
2 

−𝜋𝜋2

 

 Now the first term in this equation is equivalent to zero: 

[cos2𝑟𝑟−1 𝜃𝜃 sin 𝜃𝜃]
−𝜋𝜋2

𝜋𝜋
2  

= �
1
2

sin 2𝜃𝜃 cos2𝑟𝑟−2 𝜃𝜃�
−𝜋𝜋2

𝜋𝜋
2

 

=
1
2
��sin(𝜋𝜋) cos2𝑟𝑟−2 �

𝜋𝜋
2
�� − �sin(−𝜋𝜋) cos2𝑟𝑟−2 �−

𝜋𝜋
2
��� 

=
1
2
�(0) − (0)� 

= 0 
So we are left with, 

𝑓𝑓(2𝐶𝐶) = � cos2𝑟𝑟 𝜃𝜃 𝑑𝑑𝜃𝜃
𝜋𝜋
2 

−𝜋𝜋2

= � 𝑠𝑠𝑅𝑅𝐶𝐶 𝜃𝜃 (2𝐶𝐶 − 1) cos2𝑟𝑟−2 𝜃𝜃 sin𝜃𝜃 𝑑𝑑𝜃𝜃
𝜋𝜋
2 

−𝜋𝜋2

 

= (2𝐶𝐶 − 1)� cos2𝑟𝑟−2 𝜃𝜃 sin2 𝜃𝜃 𝑑𝑑𝜃𝜃
𝜋𝜋
2 

−𝜋𝜋2

 

= (2𝐶𝐶 − 1)� cos2𝑟𝑟−2 𝜃𝜃 (1 − cos2 𝜃𝜃)𝑑𝑑𝜃𝜃
𝜋𝜋
2 

−𝜋𝜋2

 

= (2𝐶𝐶 − 1)� cos2𝑟𝑟−2 𝜃𝜃 − cos2𝑟𝑟 𝜃𝜃 𝑑𝑑𝜃𝜃
𝜋𝜋
2 

−𝜋𝜋2

 

𝑓𝑓(2𝐶𝐶) = (2𝐶𝐶 − 1)�𝑓𝑓(2𝐶𝐶 − 2) − 𝑓𝑓(2𝐶𝐶)� 
Solving for 𝑓𝑓(2𝐶𝐶): 

𝑓𝑓(2𝐶𝐶) = 2𝐶𝐶 × 𝑓𝑓(2𝐶𝐶 − 2) − 2𝐶𝐶 × 𝑓𝑓(2𝐶𝐶) − 𝑓𝑓(2𝐶𝐶 − 2) + 𝑓𝑓(2𝐶𝐶) 
𝑓𝑓(2𝐶𝐶) + 2𝐶𝐶 × 𝑓𝑓(2𝐶𝐶) − 𝑓𝑓(2𝐶𝐶) = 2𝐶𝐶 × 𝑓𝑓(2𝐶𝐶 − 2) − 𝑓𝑓(2𝐶𝐶 − 2) 

𝑓𝑓(2𝐶𝐶) × (2𝐶𝐶) = 𝑓𝑓(2𝐶𝐶 − 2) × (2𝐶𝐶 − 1) 

𝑓𝑓(2𝐶𝐶) =
2𝐶𝐶 − 1

2𝐶𝐶
× 𝑓𝑓(2𝐶𝐶 − 2) 

Using this recurring formula: 

𝑓𝑓(2𝐶𝐶) =
2𝐶𝐶 − 1

2𝐶𝐶
×

2𝐶𝐶 − 3
2𝐶𝐶 − 2

×
2𝐶𝐶 − 5
2𝐶𝐶 − 4

×
2𝐶𝐶 − 7
2𝐶𝐶 − 6

×∙∙∙× 𝑓𝑓(0) 

𝑓𝑓(0) = � 𝑑𝑑𝜃𝜃
𝜋𝜋
2 

−𝜋𝜋2

= [𝑥𝑥]
−𝜋𝜋2

𝜋𝜋
2 =

𝜋𝜋
2
− �−

𝜋𝜋
2
� = 𝜋𝜋 

𝑓𝑓(2𝐶𝐶) =
(2𝐶𝐶)! ÷ (2𝑟𝑟 × 𝐶𝐶!)

2𝑟𝑟 × 𝐶𝐶!
× 𝜋𝜋 

Equation A2: 

𝑓𝑓(2𝐶𝐶) =
(2𝐶𝐶)!

(2𝑟𝑟 × 𝐶𝐶!)2
× 𝜋𝜋 

Using equation A2, 

𝑓𝑓(6) − 𝑓𝑓(8) = �
6!

(23 × 3!)2
−

8!
(24 × 4!)2

� 𝜋𝜋 

𝑢𝑢 𝑑𝑑𝑣𝑣 

𝑢𝑢 𝑣𝑣 𝑣𝑣 𝑑𝑑𝑢𝑢 
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=
5𝜋𝜋

128
 

Therefore, 

𝛼𝛼 =
1
𝑅𝑅7

×
5𝜋𝜋

128
 

Therefore, 

𝑑𝑑 = �𝑑𝑑𝑑𝑑 =
9𝜇𝜇02𝑚𝑚2

8𝜋𝜋
𝑣𝑣𝑣𝑣 × � 𝑅𝑅3 ×

1
𝑅𝑅7

×
5𝜋𝜋

128
𝑑𝑑𝑅𝑅

𝑏𝑏

𝑎𝑎
 

=
9𝜇𝜇02𝑚𝑚2

8𝜋𝜋
𝑣𝑣𝑣𝑣 ×

5𝜋𝜋
128

× �
1
𝑅𝑅4

𝑑𝑑𝑅𝑅
𝑏𝑏

𝑎𝑎
 

=
9𝜇𝜇02𝑚𝑚2

8𝜋𝜋
𝑣𝑣𝑣𝑣 ×

5𝜋𝜋
128

× �
−1
3𝑅𝑅3

�
𝑎𝑎

𝑏𝑏

 

=
9𝜇𝜇02𝑚𝑚2

8𝜋𝜋
𝑣𝑣𝑣𝑣 ×

5𝜋𝜋
128

×
1
3

× �
1
𝑎𝑎3

−
1
𝑏𝑏3
� 

Finally, 

𝑑𝑑 =
15

1024
× 𝜇𝜇02𝑚𝑚2𝑣𝑣 × �

1
𝑎𝑎3

−
1
𝑏𝑏3
� 𝑣𝑣 

b) Extended magnetic moment calculation 
The magnetic field (𝐵𝐵) of a magnet at a distance of 𝑥𝑥 meters along the axis of the magnet are related by Equation B1. 
Equation B1: 

𝐵𝐵 = �
𝜇𝜇0𝑚𝑚
2𝜋𝜋

�

⎝

⎜
⎛ 𝑥𝑥

�𝑥𝑥2 − �𝑑𝑑2�
2
�
2

⎠

⎟
⎞

; 

where 𝑚𝑚 is the magnetic moment of the magnet in Am2, 𝑑𝑑 is the length of the magnet in meters (along its axis) and 
𝜇𝜇0 is the magnetic permeability of free space (The magnetic permeability of the smartphone and its case was assumed 
to be same as of free-space). 
 
In accordance with the procedure of the article [18], my smartphone, a Samsung A70, along with the program “Physics 
Toolbox Magnetometer” was used to measure the magnetic field at 12 different distances. First, the position of mag-
netometer in phone was determined, and then smartphone was aligned with earth’s magnetic field such that x-compo-
nent of magnetometer is zero (magnet should be far away). Then magnet was moved along a line passing through x-

axis, figure h, and the x-component of magnetic field was recorded at 12 different distances. Figure h. The experi-
mental setup used to measure the strength of the magnet at 12 different distances 
Three measurements were taken at each position and these values were then averaged, Table a. 
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Table a. Raw and processed data used to determine the magnetic moment of the magnet 
 
The average values of the magnetic field were then plotted against the distance between magnet and magnetometer 
(dots) and then the non-linear least square regression function package, nls(), in R 

(https://rpubs.com/RobinLovelace/nls-function) on RStudio was used to fit the experimental data (red line), Figure i. 
Figure i. Magnetic field strength vs. Distance between magnet and magnetometer with best-fit curve fitted using the 
non-linear least square regression function 
 

When fitting the data, the curve was fit according to equation B1 and �𝜇𝜇0𝑚𝑚
2𝜋𝜋
� was substituted for the constant 𝑍𝑍, see 

Equation B2. 

Distance 
(m) 

Magnetic Field (μT) 

Trial 1 Trial 2 Trial 3 Average SD 

0.078 3270 3170 3240 3227 51.316 

0.088 2320 2285 2305 2303 17.559 

0.098 1700 1710 1695 1702 7.638 

0.108 1325 1315 1295 1312 15.275 

0.118 1020 1010 1025 1018 7.638 

0.138 645 645 665 652 11.547 

0.158 455 425 450 443 16.073 
0.178 310 305 330 315 13.229 

0.198 235 220 240 232 10.408 

0.218 185 160 185 177 14.434 

0.238 140 125 150 138 12.583 

0.258 105 110 120 112 7.638 
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Equation B2: 

𝐵𝐵 = (𝑍𝑍)

⎝

⎜
⎛ 𝑥𝑥

�𝑥𝑥2 − �𝑑𝑑2�
2
�
2

⎠

⎟
⎞

 

The curve produced was constrained so that the only variable that was able to change was 𝑍𝑍. After running the func-
tion, it produced a value for 𝑍𝑍 and this value and its standard error were used to calculate the magnetic moment of the 
magnet and the standard error in it: 

𝜇𝜇0𝑚𝑚
2𝜋𝜋

= 𝑍𝑍 = 1.50351 ± 0.01992 (𝑆𝑆.𝐸𝐸. )  

∴ 𝑚𝑚 =
𝑍𝑍 × 2𝜋𝜋
𝜇𝜇0

± �
0.01992

𝑍𝑍
× 100%� =

1.50351 × 2𝜋𝜋
4𝜋𝜋 × 10−7

± �
0.01992
1.50351

× 100%� 

∴ 𝑚𝑚 = 7517550 ± 1.33%  μAm2 = 7.51755 ± 0.0996  Am2 
∴ 𝑚𝑚 = 7.5 ± 0.1  Am2  
The magnetic moment could also be calculated using the equation 𝑚𝑚 = 1

𝜇𝜇0
× 𝐵𝐵𝑟𝑟 × 𝑉𝑉; where 𝐵𝐵𝑟𝑟  is the residual 

flux density of the magnet in Tesla, and 𝑉𝑉 is its volume in m3. N45 grade neodymium magnets have a residual 
flux density of 1.35T [20]. The volume of the magnet used is 7.85 × 10−6𝑚𝑚3. 

𝑚𝑚 =
1

4𝜋𝜋 × 10−7
× 1.35 × 7.85 × 10−6 = 8.43𝐴𝐴𝑚𝑚2 

The value of m based on its residual flux density is very similar to the experimentally determined value, 
however, the experimentally determined value could be made more accurate by using a magnetometer to 
measure the magnetic field rather than a smartphone. 

c) Determining the conductivity of the pipe at different temperatures 
The resistance of a conductor at different temperatures can be found using the resistance at a reference temperature, 
its temperature coefficient of resistance (𝛼𝛼) and Equation C1. 
Equation C1: 

𝑅𝑅𝑓𝑓 = 𝑅𝑅𝑖𝑖 �1 + 𝛼𝛼�𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑖𝑖�� ; 
where 𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑓𝑓 are the resistance of the conductor at the reference temperature (𝑇𝑇𝑖𝑖) at the final temperature (𝑇𝑇𝑓𝑓) 
respectively. 
The relationship between the resistance (𝑅𝑅) and resistivity (𝑧𝑧) of a material with length 𝑙𝑙 and cross-sectional area 𝐴𝐴 is 
described by Equation C2. 
Equation C2: 

𝑅𝑅 =
𝑧𝑧 × 𝑙𝑙
𝐴𝐴

 

Substituting Equation C2 into Equation C1, we get Equation C3. 
Equation C3: 

𝑧𝑧𝑓𝑓 × 𝑙𝑙𝑓𝑓
𝐴𝐴𝑓𝑓

=
𝑧𝑧𝑖𝑖 × 𝑙𝑙𝑖𝑖
𝐴𝐴𝑖𝑖

�1 + 𝛼𝛼�𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑖𝑖�� 

Since the change in the length and cross-sectional area of the pipe as a result of changing its temperature is negligible, 
Equation C3 can be simplified to Equation 17. 
Equation 17: 

𝑧𝑧𝑓𝑓 = 𝑧𝑧𝑖𝑖 �1 + 𝛼𝛼�𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑖𝑖�� ; 
where 𝑧𝑧𝑖𝑖 and 𝑧𝑧𝑓𝑓 are the resistivity of the conductor at the reference temperature and final temperature. 
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d) Full processed displacement vs. time data table 
When the temperature was very high/low, the pipe cooled down/warmed up quickly and as a result, there were less 
trials at the extreme temperatures. 
When the standard deviation was less than the measured uncertainty of 0.04 seconds, the measured uncertainty was 
used instead, as shown by the cells with a blue background. 

Temperature 
(°C)±2 

Position 
(m) 
±0.006m 

Time taken to reach position(s) 

Trial  
Mean 

 
Standard 
Deviation 1 2 3 4 5 6 7 8 9 10 

-20 

0.000 0.00 0.00         0.00 0.040 
0.065 1.20 1.20         1.20 0.040 
0.185 3.36 3.28         3.32 0.057 
0.305 5.52 5.44         5.48 0.057 
0.425 7.92 7.76         7.84 0.113 
0.545 10.24 10.00         10.12 0.170 
0.665 12.56 12.32         12.44 0.170 

-3 

0.000 0.00 0.00         0.00 0.040 
0.065 1.12 0.96         1.04 0.113 
0.185 3.20 3.04         3.12 0.113 
0.305 5.28 4.96         5.12 0.226 
0.425 7.44 7.12         7.28 0.226 
0.545 9.60 9.20         9.40 0.283 
0.665 12.16 11.28         11.72 0.622 

3 

0.000 0.00 0.00         0.00 0.040 
0.065 1.04 0.96         1.00 0.057 
0.185 3.12 2.96         3.04 0.113 
0.305 5.12 4.88         5.00 0.170 
0.425 7.20 6.96         7.08 0.170 
0.545 9.28 8.96         9.12 0.226 
0.665 11.28 11.04         11.16 0.170 

10 
 

0.000 0.00 0.00 0.00 0.00       0.00 0.040 
0.065 0.96 0.96 0.96 0.96       0.96 0.040 
0.185 2.96 2.88 2.96 2.88       2.92 0.046 
0.305 4.88 4.80 4.88 4.72       4.82 0.077 
0.425 6.80 6.80 6.88 6.72       6.80 0.065 
0.545 8.72 8.80 8.80 8.72       8.76 0.046 
0.665 10.64 10.80 10.80 10.80       10.76 0.080 
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15  

0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 

0.00 0.040 
0.065 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 

 
1.04 0.040 

0.185 2.96 2.96 2.96 2.96 2.96 2.96 2.88 2.96 2.88 
 

2.94 0.040 
0.305 4.80 4.80 4.80 4.80 4.88 4.80 4.72 4.88 4.72 

 
4.80 0.057 

0.425 6.80 6.72 6.72 6.72 6.80 6.72 6.64 6.80 6.56 
 

6.72 0.080 
0.545 8.72 8.64 8.64 8.64 8.72 8.56 8.48 8.64 8.48 

 
8.61 0.089 

0.665 10.64 10.56 10.56 10.56 10.64 10.48 10.40 10.56 10.48 
 

10.54 0.078 

20  

0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.040 
0.065 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.040 
0.185 2.80 2.80 2.88 2.88 2.88 2.88 2.80 2.80 2.80 2.88 2.84 0.042 
0.305 4.56 4.64 4.72 4.64 4.64 4.64 4.64 4.64 4.64 4.72 4.65 0.045 
0.425 6.48 6.56 6.56 6.48 6.56 6.56 6.56 6.56 6.56 6.56 6.54 0.040 
0.545 8.24 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.38 0.051 
0.665 10.08 10.24 10.32 10.24 10.24 10.24 10.24 10.24 10.24 10.32 10.24 0.065 

30  

0.000 0.00 0.00 0.00 0.00 
      

0.00 0.040 
0.065 0.88 0.88 0.88 0.88 

      
0.88 0.040 

0.185 2.64 2.72 2.72 2.64 
      

2.68 0.046 
0.305 4.32 4.48 4.48 4.40 

      
4.42 0.077 

0.425 6.08 6.24 6.24 6.16 
      

6.18 0.077 
0.545 7.84 8.00 8.00 7.92 

      
7.94 0.077 

0.665 9.60 9.84 9.76 9.76 
      

9.74 0.101 

38  

0.000 0.00 0.00 0.00 
       

0.00 0.040 
0.065 0.88 0.80 0.84 

       
0.84 0.040 

0.185 2.56 2.48 2.60 
       

2.55 0.061 
0.305 4.24 4.16 4.20 

       
4.20 0.040 

0.425 6.00 5.84 5.80 
       

5.88 0.106 
0.545 7.68 7.52 7.40 

       
7.53 0.140 

0.665 9.36 9.20 9.08 
       

9.21 0.140 

45 
 

0.000 0.00 0.00         0.00 0.040 
0.065 0.80 0.80         0.80 0.040 
0.185 2.48 2.48         2.48 0.040 
0.305 4.08 4.08         4.08 0.040 
0.425 5.84 5.68         5.76 0.113 
0.545 7.44 7.28         7.36 0.113 
0.665 9.12 8.96         9.04 0.113 
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50  

0.000 0.00 0.00 
        

0.00 0.040 
0.065 0.80 0.80 

        
0.80 0.040 

0.185 2.48 2.56 
        

2.52 0.057 
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