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ABSTRACT 

The analysis of pulsars is a complicated procedure due to the influence of background radio waves. Special radio 
telescopes designed to detect pulsar signals have to employ many techniques to reconstruct interstellar signals and 
determine if they originated from a pulsating radio source. The Discrete Fourier Transform on its own has allowed 
astronomers to perform basic spectral analysis of potential pulsar signals. However, Radio Frequency Interference 
(RFI) makes the process of detecting and analyzing pulsars extremely difficult. This has forced astronomers to be 
creative in identifying and determining the specific characteristics of these unique rotating neutron stars. Astrophysi-
cists have utilized algorithms such as the Fast Fourier Transform (FFT) to predict the spin period and harmonic fre-
quencies of pulsars. However, FFT-based searches cannot be utilized alone because low-frequency pulsar signals go 
undetected in the presence of background radio noise. Astrophysicists must stack up pulses using the Fast Folding 
Algorithm (FFA) and utilize the coherent dedispersion technique to improve FFT sensitivity. The following research 
paper will discuss how the Discrete Fourier Transform is a useful technique for detecting radio signals and determining 
the pulsar frequency. It will also discuss how dedispersion and the pulsar frequency are critical for predicting multiple 
characteristics of pulsars and correcting the influence of the Interstellar Medium (ISM).

Introduction 

The discovery of the first pulsar dates back to when Jocelyn Bell was studying radio sources using a radio telescope 
designed by her advisor, Antony Hewish (Alan, 2006). Both scientists observed radio signals that originated from the 
same location in the sky and were separated by precisely 1.33 seconds. Bell and Hewish initially ruled out natural 
sources of the intermittent radio pulses, joking that they came from "little green men." However, after discovering a 
second pulsating source, the "LGM (Little Green Men) Hypothesis" was abandoned in favor of a new discovery, later 
deemed the pulsar. 

In astrophysics, pulsars are rapidly rotating neutron stars that produce pulses of electromagnetic radiation at 
their spin rate. The rotating magnetic field serves as the star's generator, accelerating charged particles that travel along 
the field lines (Ryden, 2003). These particles move relativistically, causing them to produce a large stream of electro-
magnetic radiation confined to two narrow beams along the pulsar's magnetic poles. Typically, the magnetic poles do 
not align with the pulsar's spin axis, and the pulses of radiation sweep around like the light of a lighthouse (Cofield, 
2016). This phenomenon results in an evenly spaced series of electromagnetic pulses that ground-based telescopes 
can detect.  

Special radio telescopes are capable of determining variation in the successive pulses. However, detecting 
these signals can be challenging because background radio waves (referred to as noise) swamp weak pulses. One 
attempt at detecting these precise radio waves involves folding, which is when astronomers stack up many pulses to 
build a detectable signal. This process is impractical on its own because, for successive pulses to overlap, knowledge 
of the pulsar's period should be known ahead of time. Folding also needs to be performed on every observation at 
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every possible period. Therefore, astronomers use a mathematical function known as the Fourier Transform to detect 
radio signals and identify essential characteristics of pulsars. 

When pulsar signals eventually reach Earth, the low-frequency components are delayed due to interactions 
with electrons in the interstellar medium (ISM). Despite having a small density, the ISM slightly redshifts radiation 
detected on Earth. Photons propagating through the ISM are dispersed as a function of group velocity, leading to a 
frequency-dependent dispersive delay (△t) along the path of the radiation (Bentum, Bonetti, Spallicci, 2016). To 
determine the actual spin frequency of a pulsar from the data of a dispersed signal, astronomers employ coherent 
dedispersion. This technique involves the deconvolution of the energy of the emitted radiation with a Fourier Trans-
form function (Bassa & Hessels & Pleunis, 2016). Coherent dedispersion involves heavy computation, but it is the 
dominant technique that utilizes the Discrete Fourier Transform to correct dispersion. 
 

How the Fourier Transform is Involved in Detecting Pulsar Data 
 
The Discrete Fourier Transform and Nyquist-Shannon Theorem 
 
The Fourier transform is a reversible, linear mathematical transform used to decompose the graph of a signal from its 
time domain to the frequency domain. As shown by the definition of the continuous Fourier Transform in Equation 1 
(Condon and Ransom, 2016), any integrable function f(x) has a Fourier transform F(s) of the real variable s. One 
unique component of the Fourier transform is that multiplying the variables x and s together will produce a product 
that is always dimensionless. For example, the Fourier transform of a waveform function f(t) expressed in units of 
seconds (s) results in a frequency domain signal F(v) written using the units s-1, which is equal to Hz. 
 
Equation 1: Definition of the Continuous Fourier Transform 

                                                                        
𝐹𝐹(𝑠𝑠) =  ∫ 𝑓𝑓(𝑥𝑥)𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝑥𝑥∞

−∞            
 
Practical applications of the Fourier Transform do not utilize the continuous Fourier transform because it involves 
transforming a time-domain signal of infinite duration. This theoretically requires sampling an endless amount of data. 
Therefore, astronomers use the Discrete Fourier Transform (DFT) formula shown in Equation 2 (Condon and Ran-
som, 2016) to convert a signal known at N points to the frequency domain. Graphs of the complex DFT contain a 
range of frequencies k that begin at - (N/2 - 1) and go to the highest frequency N/2. However, the  
useful information in a Fourier Transform typically comes from positive frequencies.   
 
Equation 2: Definition of the Discrete Fourier Transform 
                      

𝑋𝑋𝑘𝑘 =  �𝑋𝑋𝑗𝑗𝑒𝑒−2𝜋𝜋𝜋𝜋𝑗𝑗𝑘𝑘/𝑁𝑁
𝑁𝑁−1

𝑗𝑗=0

  

 
The range of frequencies in the DFT is determined based on the time interval ts that is used to sample data from a radio 
telescope. According to the Nyquist-Shannon theorem, or sampling theorem, any continuous function with a known 
frequency range (Δv) of the time domain signal can be reconstructed precisely with a maximum sampling period of 
1/(2Δv). Equation 3 (Condon and Ransom, 2016) shows the equation for the Nyquist Frequency, a value describing 
the maximum observable frequency in a signal's DFT. Knowledge of the Nyquist frequency and sampling period 
allows astronomers to prevent aliasing and evenly space out acquired data so that it can be utilized in the process of 
data folding. 
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Equation 3: Definition of the Nyquist Frequency 
       

𝑉𝑉𝑁𝑁/2 = 1/(2∆𝑡𝑡) 
                 
The Role of the Fast Fourier Transform and Folding in Detecting Pulsar Data 
Digital signal processing (DSP), commonly used in modern radio astronomy, takes advantage of the Fast Fourier 
Transform (FFT) algorithm to produce a signal's DFT and determine if it originated from a real pulsar (Price, Kocz, 
Bailes, 2017). The frequency-domain of a pulsar signal contains large "spikes," indicating the fundamental spin fre-
quency and the multiple harmonic frequencies that add a richness to the pulsar signals. Software programs store the 
power spectrum from these signals in frequency bins, which are equal segments [f1 , fh ] on the frequency axis con-
taining different signal power values. Figure 1 shows that, even in a pure sine wave sample, there is not a precise peak 
showing the frequency because of the finite duration of the signal and discrete sampling of the wave. 
 
 
 
 
 

 
 
 
 

 
 
 
Figure 1. A sample DFT of pure sine wave using frequency bins from DSP Stack Exchange 
 
The Fourier Transform was initially used in blind searches for pulsars to determine the spin period and pulsar fre-
quency from signal data. Astronomers first sampled and transformed "test" signals, such as sine and sawtooth func-
tions of an array of integers, using the sampling period predicted by the Nyquist-Shannon theorem (Nervosa, 2006). 
Afterward, if the generated power spectrums in the frequency domain were accurate, instruments such as the Ross X-
ray Timing Explorer (RXTE) would programmatically implement the FFT on signal data to detect pulsar signals. The 
Discrete Fourier Transform is useful in the search for pulsars due to its sensitive response to periodicity (Ransom, 
2002). However, there are many signals from slowly rotating pulsars that go undetected because the "peaks" of pulsar 
signals in the frequency domain can be challenging to discern in the presence of background radio waves. The follow-
ing explanations of flux density, system equivalent flux density, and system temperature will help to explain why the 
FFT search technique is not sensitive enough to detect many long-period radio pulsars. 

Flux density describes the rate at which electromagnetic radiation passing through a surface transfers energy. 
In the case of pulsars, the system temperature Tsys is the noise influencing the radio telescope that can make a single 
pulse from a pulsar challenging to detect (Breton, 2008). System equivalent flux density SEFD is the flux density 
equivalent of the system temperature that is proportional to 2*Tsys, as shown in Equation 4 (Kramer and Lorimer, 
2004). When analyzing system equivalent flux density, the effective area of the peak antenna Ae is constant. 
 
Equation 4: Definition of System Equivalent Flux Density 

 

𝑆𝑆𝑆𝑆𝐹𝐹𝑆𝑆 =  
2𝑘𝑘𝑇𝑇𝜋𝜋𝑠𝑠𝜋𝜋
𝐴𝐴𝑒𝑒

1026𝐽𝐽𝐽𝐽 
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The SEFD is a useful measurement for determining the sensitivity of a pulsar search technique because it relates the 
system temperature to the mean flux density Sv, rms. Equation 5, the flux-density based radiometer formula (Parsons, 
2012), shows this relationship. τ represents the integration time in seconds, and Δν is the bandwidth in Hz. However, 
Equation 5's primary importance in this explanation is to identify the proportionality between the SEFD and Sv, rms. 
 
Equation 5: Definition of the Mean Flux Density in Relation to the SEFD 

 

𝑆𝑆𝑣𝑣,𝑟𝑟𝑟𝑟𝜋𝜋  =  
𝑆𝑆𝑆𝑆𝐹𝐹𝑆𝑆
√𝑇𝑇∆𝑣𝑣

 

                        
A lower SEFD value is desirable for detecting periodic pulsar signals because it means that less added noise Tsys is 
interfering with the radio signal (Bassa & Hessels & Pleunis, 2016). Also, according to the flux-density based radi-
ometer formula, search techniques with a lower SEFD should have a small mean flux density Sv, rms and are therefore 
more sensitive. For long-period pulsars, the mean flux density detected by the FFT can be much larger than what the 
radiometer equation predicts because of the strong effect of red noise, or noise that primarily impacts low frequencies. 
One effective way to recover the loss in sensitivity and be able to detect long-period pulsars involves using the time-
domain search technique "folding" in conjunction with the FFT data.  

The concept of "folding" the time series of pulsar data begins with an understanding of phase and the phase 
bin number. In a spherical coordinate system for three-dimensional space, as the azimuthal angle (horizontal angle) 
of a rotating object represents the phase. Instead of using a 360० method of measuring phase, one rotation counts 
as one unit. A phase value of 1.5, for example, indicates the pulsar has rotated one and a half times. For a signal with 
period P where ∆t represents the time between two consecutive samples, the time series is graphed as y(k) where k = 
0, 1, 2, …, n-1.  
 
Equation 6: Definition of the phase value corresponding to y(k) 

 
∅𝑘𝑘 =  

𝑘𝑘∆𝑡𝑡
𝑃𝑃

 
 
The phase corresponding to y(k) is represented by ØK and calculated based on the pulse equation used to calculate the 
pulsar profile shown in Equation 6 (Kulkarni, 2017). All the phase values fall into a range of 0 to 1 because [x] is 
equal to x - fix(x), with fix(x) being the largest integer value smaller than x. For example, if x equals 2.4, [x] would 
have a value of 0.4 because 2.4 - 2.0 = 0.4. 

Similar to frequency bins, software programs use equally segmented phase bins [Ø1 , Øk] to display the com-
plete folded pulsar profile over m bins (Olney, 2019). Figure 2 shows one example of a folded pulse profile, with the 
PULSE@Parkes outreach project recording a phase of approximately 0.8. At each phase bin, the frequency in MHz, 
the time, and the flux are recorded by off-line software packages and then stacked up on top of each other using the 
folding technique.  
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Figure 2. Sample folded pulse profile from the PULSE@Parkes outreach project for PSR J1717-4054 
 
The first step in creating a folded profile is to use the Fast Fourier Transform to determine the spin period of the pulsar. 
Next, astronomers implement the Fast Folding Algorithm (FFA) to make equally spaced marks in the pulsar data 
based on the calculated spin period, as shown in the middle section of Figure 3 (Kaspi, Parent, Ransom, 2018). This 
same algorithm can then add up the signal in each of the folds and "stack up" all the layers together, as shown in 
Figure 3. Through the FFA algorithm, the pulsar maintains its entire harmonic structure as opposed to the limited 
number of harmonics in FFT-based searches. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. An illustration of the technique of folding from Searching and Identifying Pulsars 
 
In pulsar analysis, the time domain plot in the bottom of Figure 4 shows how the signal strength varies through an 
observation. The darker squares (bins) indicate more significant signal strength and are detected every time a pulsar 
beam passes the observer, whereas the lighter squares indicate weak signal strength. It is important to note that the 
spikes in the signal will always occur at the same phase due to the precise periodic timing of the emitted radio signals. 

The completed pulse profile, shown above the complete folded profile in Figure 4, is created by adding all 
the sub-folds together, a process known as integration. Peaks in the pulse profile show that the pulsar is "on," and the 
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smaller lines which indicate background noise show when the pulsar is "off" (Noutsos, 2020). Pulsars are present if 
the complete pulsar profile has a visible pulse. 

 
 
 

 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
Figure 4. Example Time Series and Pulse Profile from Searching and Identifying Pulsars 

 
Using the Discrete Fourier Transform to Detect Pulsar Features 
 
Determining the Spin Period using PRESTO software package 
 
The process of finding and confirming pulsar signals is very computationally demanding, mainly because of the in-
fluence of Radio Frequency Interference (RFI). RFI is a hindrance to any search involving radio waves, but it can be 
especially problematic for pulsar searches (Smyth, 2013). Human-made sources of RFI, such as the alternating current 
(AC) that supplies our homes, produce intermittent signals that repeat similarly to that of pulsar signals. Therefore, it 
may appear difficult for radio telescopes to detect the extremely sensitive pulses produced by pulsars and perform 
spectral analysis based on this data. 

One software package that astronomers have created to deal with the difficulty of detecting pulsar signals is 
PRESTO (Scott Ransom, 2011). The PRESTO package begins by taking the Fourier transform of a time series of 
signal strength at many different times until it finds a promising candidate. It then measures the observation time using 
the reference point of an epoch, with Epochbary representing the start of the observation. After finding a promising 
candidate, a program known as prepfold (similar to the Fast Folding Algorithm) is used to fold the time domain data 
at the pulsar period. The time series and pulse profile are graphed on a prepfold plot and used to determine whether 
there is significant evidence of a pulsating radio signal coming from a pulsar (Lynch, 2020). 
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Figure 5: A prepfold plot of the J1023+00 pulsar from the GBT 350-MHz Driftscan survey 
 
As shown from the prepfold plot of the J1023+00 pulsar in Figure 5, many features of a pulsar can be analyzed based 
on the Fourier transform. This research paper will focus on the data gathered from the J1023+00 pulsar and determine 
how it can precisely determine the spin period, period derivative, characteristic age, and energy generation rate.  
  
 
 
 
 
 
 
 
Figure 6: The Spin Period of the J1023+00 Pulsar from the GBT 350-MHz Driftscan survey 

 
The graph in Figure 6 shows the spin period, in milliseconds, of the pulsar on the x-axis and Reduced χ 2 value on 
the y-axis. In statistics, the reduced "chi-squared" (χ 2) value shows the degree to which a model agrees with some 
data. Large measurements of the "chi-squared" value typically indicate that there is no significant agreement between 
the model and data. However, in the scenario of analyzing pulsars, large values are favored because we are comparing 
a pulsar-less model to data containing no pulsars (Andrae, Schulze-Hartung, Melchior, 2010). Therefore, “peaks” in 
the graphs of prepfold that show large chi-squared values are indicative of the actual measurements of pulsar charac-
teristics. In the J1023+00 Pulsar, the spin period's value is defined less accurately due to the use of only 256 profile 
bins when determining features from the data set. 

The spin period of the J1023+00 pulsar is approximately 1.69 milliseconds based on Figure 6, which means 
that this pulsar rotates about 592 times a second. J1023+00 is a millisecond pulsar based on this measurement, meaning 
it likely originated from a globular cluster with an extremely high stellar density.  
 
Using the Pulsar Spin Period to Calculate Additional Features of Pulsars 
 
 
 
 
 
 
 
Figure 7: The Period Derivative of the J1023+00 Pulsar from the GBT 350-MHz Driftscan survey 
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Figure 7 shows the graph of the P-dot, or first-time derivative indicating how much the period of the J1023+00 pulsar 
changes over time. The definition of the period derivative shown in Equation 7 (Nervosa, 2006) has a measurement 
in units of "seconds per second," indicating how many seconds the pulsar's rotation changes after a single second. 
Pulsars usually behave like most stars, where the spin period increases as a function of time because the rotating 
neutron star is translating rotational kinetic energy into emitted radiation. 
 
Equation 7: Definition of the Period Derivative 
 

𝑃𝑃 =  
𝑑𝑑𝑃𝑃
𝑑𝑑𝑡𝑡

 
              
A p-dot value that is at approximately zero indicates that the pulsar is isolated because the change in the spin period 
is not significant enough to be measured by an observation on Earth. In the example of the J1023+00 pulsar, the p-dot 
value is close enough to zero to where the pulsar is isolated. There is some variability as to the exact period derivative 
of the pulsar, but the location of the graph's peak indicates that it is approximately 9.14*10^-12 seconds per second. 

The spin period and period derivative both are useful to calculate an approximate value for the age of a pulsar 
(characteristic age) because pulsars slow down at a very consistent rate. Equation 8 shows the definition of a pulsar's 
characteristic age, with P representing the spin period and dP/dt representing the spin period (Nervosa, 2006). This 
formula approximates the pulsar's age, given the assumption that the pulsar has no magnetic field decay and is in a 
perfect vacuum. The characteristic age of the J1023+00 pulsar is approximately 9.25*10^7 seconds (2.93 calendar 
years) based on Equation 8, indicating that it is at the beginning of its life-cycle.  
 
Equation 8: Definition of the Characteristic Age 
 

𝐴𝐴𝐴𝐴𝑒𝑒 =  
𝑃𝑃

2 𝑑𝑑𝑃𝑃/𝑑𝑑𝑡𝑡
 

                           
The J1023+00 pulsar is classified so far as an isolated, rotationally-powered radio pulsar with a spin period of 1.69 
milliseconds and a characteristic age of 2.93 calendar years. Isolated radio pulsars typically have powerful magnetic 
fields that result in the release of radiation from accelerated charged particles (Condon and Ransom, 2016). The emis-
sion of radiation at the magnetic dipoles of rotationally-powered pulsars results in the loss of rotational kinetic energy, 
which is related to the period and p-dot value. Therefore, astronomers can use the pulsar period and period derivative 
to calculate the energy generation rate of the J1023+00 pulsar. 
  The equation 2π/P gives the angular velocity of a rotating object. Plugging this value ω into the formula for 
rotational kinetic energy gives the rotational kinetic energy as a function of the pulsar period, shown in Equation 9 
(Lyne and Graham-Smith, 2012). 
  
Equation 9: Definition of Angular Velocity for a Rotating Object 
             

𝐾𝐾 =  
1
2
𝐼𝐼𝜔𝜔2 =

2𝜋𝜋2𝐼𝐼
𝑃𝑃2

 
                     

 The derivative of the rotational kinetic energy relates directly to the rate at which the kinetic energy is chang-
ing, as shown in Equation 10 (Lyne and Graham-Smith, 2012). Given that lost rotational kinetic energy is transferred 
to the emission of radiation at the magnetic dipoles, the energy generation rate dE/dt of a rotationally-powered pulsar 
is -(dK/dt). 
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Equation 10: Definition of the Derivative of Kinetic Energy 
 

𝑑𝑑𝐾𝐾
𝑑𝑑𝑡𝑡

 =  −
4𝜋𝜋2𝐼𝐼
𝑃𝑃3

𝑑𝑑𝑃𝑃
𝑑𝑑𝑡𝑡

 
 
Assuming that the J1023+00 pulsar is a uniform sphere, the moment of inertia, I, has an approximate value of 2/5 * 
M * R^2. M represents the mass of the pulsar, while R represents the pulsar's radius. Neutron stars, in general, have an 
estimated radius of 10 kilometers and a mass of about 1.4 solar masses due to the precise conditions that are necessary 
for these celestial objects to exist (Lorimer, 2008). Plugging all of these values into Equation 10 and taking the nega-
tive value of dK/dt gives an energy generation rate dE/dt of 2.11*10^31 joules/second. This value shows that the 
J1023+00 pulsar releases around 2.11*10^31 joules of energy every second due to charged particles flung from the 
surface of the star.  

The release of energy from pulsars, known as synchrotron radiation, should not be confused with the energy 
from the much smaller pulses we detect on Earth. These pulses are the result of the individual charged particles emit-
ting beams of radiation along their direction of motion.  
 
Detecting Impact of ISM on Pulse Propagation Through Coherent Dedispersion 
 
Interstellar Propagation and Dispersion 
 
Pulsars are classified as steep-spectrum radio sources, meaning that they produce compact radio signals with a peak 
frequency at only a few hundred MHz. In the same way that optical light undergoes dispersion when it passes through 
water, intermittent radio waves produced by pulsars are significantly dispersed as they pass through the interstellar 
medium. The interstellar medium (ISM), although partly consisting of cold clouds of neutral hydrogen atoms, contains 
diffuse regions with ionized hydrogen and free electrons (Smith, 1999). Pulsar signals that pass through these electrons 
experience a time delay t relative to their radio frequency, as shown in Equation 11. 
 
Equation 11: Definition of time delay using the dispersion measure value. 
    

𝑡𝑡 =  
𝑆𝑆𝐷𝐷

2.42 × 10−16𝑣𝑣2
(𝑠𝑠) 

 
The value DM in this equation represents the dispersion measure, which, by definition, is the "integrated column 
density of free electrons between an observer and a pulsar." Another way to think of the dispersion measure is the 
number of free electrons between the observer and pulsar per unit area (Lyon, 2016). Energetic radio waves with a 
higher frequency 𝜈𝜈 lose very minimal speed when they travel past charged particles in the interstellar medium. How-
ever, low-frequency signals in the presence of charged particles slow down more significantly due to refraction. This 
phenomenon leads to a pulsar signal of bandwidth B to have the low and high ends of the bandwidth to be received at 
different times, as shown in Figure 8 (McKee, 2018). The x-axis represents the time for one "pulse phase" (period), 
and the y-axis represents the radio frequency. A clear pattern in Figure 8 depicts how radio telescopes detect the low 
frequency components of the signal after the high frequencies. 
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Figure 8: A Graph Depicting Dispersion as Being Influenced by Frequency from the Max Planck Institute for Radio 
Astronomy 
 
The delay resulting from the interaction of radio waves with charged particles causes the profile to undergo dispersive 
"smearing." Dispersive smearing results in the spike of the pulsed signal being broadened at higher pulse phases, as 
shown in the bottom section of Figure 9 (Lorimer, 2008). When radio telescopes first observe pulsar signals, scatter-
broadening at lower frequencies decreases the observational sensitivity and timing precision. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Pulse Broadening Caused by Scattering from the Handbook of Pulsar Astronomy 
 
Using Coherent Dedispersion to Remove Dispersive Effects of ISM 

 
For pulsar searches, the dispersion measure (DM) is a search parameter that specifies the amount of time by which 
the interstellar medium smears signals tsmear. Astronomers specifically aim to narrow the bandwidth B to decrease the 
tsmear value (Smyth, 2013). Instruments have implemented ways of observing many small signal channels and combin-
ing all the signals to create a larger bandwidth, intending to limit the impacts of a large bandwidth on dispersive 
smearing.  

Adding the frequencies together with the predicted dispersive delay was initially used in incoherent dedis-
persion to reconstruct an original pulsar signal (Barsdell, Bailes, Barnes, 2012). Astronomers nowadays use software 
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to perform coherent dedispersion, a process modeling the effect of the ISM on radio propagation as a linear filtering 
operation. The ISM filter can be modeled as a transfer function H(v) and multiplied with the Fourier Transform of the 
incoming signal F(v) to produce the Fourier Transform of the filtered signal G(v). 

The transfer function H(v) is depicted using the notation H(v + v0), where v0 is the central observing fre-
quency. The bandwidth of the signal is bounded by ± v. H(v + v0) is calculated using the transfer function formula 
shown in Equation 12 (Mckee, 2018), written in terms of the wavenumber k(v) and the distance from the pulsar d. 
 
Equation 12: Transfer function formula in terms of the wavenumber and fundamental frequency 
 

𝐻𝐻 (𝑓𝑓0 + 𝑓𝑓) = exp [−𝑖𝑖𝑘𝑘(𝑓𝑓0 + 𝑓𝑓)𝑑𝑑] 
  

Astronomers have performed further calculations to write the wavenumber k(v) in terms of the dispersion measure 
DM and bandwidth frequencies, resulting in the modified transfer function shown in Equation 13 (Stairs, 2002). By 
convolving the discrete Fourier Transform of the observed signal with the inverse transfer function H(v + v0), the 
Fourier Transform of the filtered signal G(v) will be almost perfectly aligned. Coherent dedispersion requires heavy 
computation by software programs, but it is still a valuable technique to determine the accurate pulsar profile of a high 
sensitivity signal. 
 
Equation 13: Modified transfer function formula which is convolved with the DFT 
 

𝐻𝐻 (𝑣𝑣0 + 𝑣𝑣1) = exp [2𝜋𝜋𝑖𝑖 𝐷𝐷𝐷𝐷
2.41×10−10

𝑣𝑣12

𝑣𝑣02(𝑣𝑣0+𝑣𝑣1)
]          

 

Conclusion 
 
The Discrete Fourier Transform is a valuable mathematical technique that has allowed astronomers to determine in-
novative solutions for performing spectral analysis of pulsars. Radio Frequency Interference (RFI) makes the process 
of detecting and analyzing pulsar signals through blind searches very difficult. This combined with the relatively few 
numbers of pulsars detected, has forced astronomers to be creative in the techniques they use to determine the specific 
characteristics of these unique rotating neutron stars. 

By sampling the time domain data of a pulsating signal using the Nyquist-Shannon theorem, algorithms such 
as the Fast Fourier Transform (FFT) have been used to predict the spin period and harmonic frequencies. However, it 
was quickly realized that astronomers could not use FFT-based searches alone because low-frequency pulsar signals 
can go undetected in the presence of background noise. To improve the sensitivity, astronomers have used folding to 
stack up many pulses at the pulse period. Folding is impractical on its own, but the computation needed to perform 
this technique has been made substantially easier thanks to the Fast Folding Algorithm. 

Though coherent dedispersion is mathematically precise it comes at the cost of being computationally de-
manding. Astronomers still utilize this technique because of the noticeable improvement in sensitivity compared to 
incoherent dedispersion. Coherent dedispersion is critical because it utilizes the Discrete Fourier Transform to accu-
rately display pulsar signals in the time domain. 
 

Acknowledgments 
 
I would like to personally thank Professor Arthur Western and the Pioneer Academics Research Program team for 
consistently supporting me in the completion of this challenging project. 
 
 

Volume 10 Issue 2 (2021) 

ISSN: 2167-1907 www.JSR.org 11



References 
 
A. Chodos. (2006). This Month in Physics History: February 1968: The Discovery of Pulsars Announced. American 
Physical Society, Volume 15, Number 2. Retrieved from https://www.aps.org/publications/apsnews/200602/his-
tory.cfm 
 
A. Lyne, F. Graham-Smith. (2012). Pulsar Astronomy 4th Edition. Cambridge Astrophysics, Series Number 48.  

A. Nervosa. (2006). Detecting Pulsars. Retrieved from http://astronomyonline.org/Stars/Pulsars.asp 

A. Noutsos, G. Desvignes, M. Kramer, N. Wex, P. C.C. Freire, et al. (2020). Understanding and improving the tim-
ing of PSR J0737−3039B. Astronomy & Astrophysics 643, A143. DOI:https://doi.org/10.1051/0004-
6361/202038566 

A. Parsons. (2012). Radiometer Equation Applied to Telescopes. AstroBaki. Retrieved from https://casper.ssl.berke-
ley.edu/astrobaki/index.php/Radiometer_Equation_Applied_to_Telescopes 

B.R. Barsdell, M. Bailes, D.G. Barnes, & C.J. Fluke. (2012). Accelerating Incoherent Dedispersion. Monthly No-
tices of the Royal Astronomical Society, Volume 422, Issue 1. DOI:https://doi.org/10.1111/j.1365-
2966.2012.20622.x 

B.R. Ryden. (2003). Astronomy 162: Pulsars. Retrieved from http://www.astronomy.ohio-state.edu/~ry-
den/ast162_5/notes2 

C. Cofield. (2016). What Are Pulsars?. Retrieved from https://www.space.com/32661-pulsars.html 

C.G. Bassa, Z. Pleunis, J.W.T Hessels. (2016). Enabling Pulsar and Fast Transient Searches using Coherent Dedis-
persion. Instrumentation and Methods for Astrophysics. DOI:https://doi.org/10.1016/J.ASCOM.2017.01.004 

D.C. Prince, J. Kocz, M. Bailes, L.J. Greenhill. (2017). Introduction to the Special Issue on Digital Signal Pro-
cessing in Radio Astronomy. Journal of Astronomical Instrumentation. 
DOI:https://doi.org/10.1142/S2251171716020025 

D.R. Lorimer & M. Kramer. (2004). Handbook of Pulsar Astronomy. Cambridge University Press, Vol. 4. 

D. R. Lorimer. (2008). Binary and Millisecond Pulsars. Living Reviews in Relativity. 
DOI:https://doi.org/10.12942/lrr-2008-8 

D. Smyth. (2013). Handbook on Radio Astronomy Third Edition. Radiocommunication Bureau Edition of 2013.  

E. Parent, V. M. Kaspi, S. M. Ransom, M. Krasteva, et al. (2018). The implementation of a Fast-Folding pipeline for 
long-period pulsar searching in the PALFA survey. High Energy Astrophysical Phenomena. 
DOI:https://doi.org/10.3847/1538-4357/aac5f0 

G. Hobbs, R. Hollow, J.K. Khoo. (2009). The PULSE@Parkes Project: a New Observing Technique for Long-Term 
Pulsar Monitoring. Publications of the Astronomical Society of Australia 26(4).  
DOI:https://doi.org/10.1071/AS09021 

Volume 10 Issue 2 (2021) 

ISSN: 2167-1907 www.JSR.org 12

https://www.aps.org/publications/apsnews/200602/history.cfm
https://www.aps.org/publications/apsnews/200602/history.cfm
http://astronomyonline.org/Stars/Pulsars.asp
https://doi.org/10.1051/0004-6361/202038566
https://doi.org/10.1051/0004-6361/202038566
https://casper.ssl.berkeley.edu/astrobaki/index.php/Radiometer_Equation_Applied_to_Telescopes
https://casper.ssl.berkeley.edu/astrobaki/index.php/Radiometer_Equation_Applied_to_Telescopes
https://doi.org/10.1111/j.1365-2966.2012.20622.x
https://doi.org/10.1111/j.1365-2966.2012.20622.x
http://www.astronomy.ohio-state.edu/%7Eryden/ast162_5/notes2
http://www.astronomy.ohio-state.edu/%7Eryden/ast162_5/notes2
https://www.space.com/32661-pulsars.html
https://doi.org/10.1016/J.ASCOM.2017.01.004
https://doi.org/10.1142/S2251171716020025
https://doi.org/10.12942/lrr-2008-8
https://doi.org/10.3847/1538-4357/aac5f0
https://doi.org/10.1071/AS09021


G. Smith. (1999). Gene Smith’s Astronomy Tutorial: The Interstellar Medium. University of California, San Diego 
Center for Astrophysics & Space Sciences. Retrieved from https://casswww.ucsd.edu/archive/public/tuto-
rial/ISM.html 

I.H. Stairs. (2002). Pulsar Observations II. -- Coherent Dedispersion Polarimetry, and Timing. Single-Dish Radio 
Astronomy: Techniques and Applications, Volume 278. DOI: Retrieved from http://adsabs.har-
vard.edu/pdf/2002ASPC..278..251S 

J. Boyles. (2009). GBT 350-MHz Driftscan Survey Processing. Retrieved from https://www.http://as-
tro.phys.wvu.edu/GBTdrift350/  

J. Condon & S. Ransom. (2016). Essential Radio Astronomy. Princeton Series in Modern Observational Astronomy.  

J. McKee. (2018). Introduction to Pulsar Timing and Tempo2. Max Planck Institute for Radio Astronomy IPTA Stu-
dent Week. Retrieved from http://ipta.phys.wvu.edu/files/student-week-2018/pulsar_timing_lecture.pdf 

J. McKee. (2018). The Interstellar Medium. Max Planck Institute for Radio Astronomy IPTA Student Week. Re-
trieved from http://ipta.phys.wvu.edu/files/student-week-2018/ism_lecture.pdf 

M.J. Bentum, L. Bonetti, A. Spallicci. (2016). Dispersion by pulsars, magnetars, fast radio bursts and massive elec-
tromagnetism at very low radio frequencies. Faculteit van Elektrotechniek, Wiskunde en Informatica, Telecommuni-
cation Engineering. DOI:https://doi.org/10.1016/j.asr.2016.10.018 

R. Andrae, T. Schulze-Hartung, P. Melchior. (2010). Do and don’ts of reduced chi-squared. Institut für Theoretische 
Astrophysik, ZAH, Albert-Ueberle-Str. 2. Retrieved from https://www.semanticscholar.org/paper/Dos-and-
don%27ts-of-reduced-chi-squared-Andrae-Schulze-Hartung/353308ea0f2e5be88f397cbd5c0528bc0069208b 

R. J. Lyon. (2016). Why are Pulsars Hard to Find?. Submitted to the University of Manchester for the Degree of 
Doctor of Philosophy in the Faculty of Engineering and Physical Sciences. Retrieved from http://www.scienceguy-
rob.com/wp-content/uploads/2016/12/WhyArePulsarsHardToFind_Lyon_2016.pdf 

R.P. Breton. (2008). Radio Pulsars in Binary Systems. Department of Physics McGill University. Retrieved from 
https://https://arxiv.org/abs/0907.2623 

R.S. Lynch. (2020). Searching for and Identifying Pulsars. Department of Physics, McGill University. Retrieved 
from http://pulsarsearchcollaboratory.com/wp-content/uploads/2016/01/PSC_search_guide.pdf 

S. Juteux, R. Ramachandran, B.W. Stappers. et al. (2002). Searching for Pulsars in Close Circular Binary Systems. 
Astronomy & Astrophysics. DOI:https://doi.org/10.1051/0004-6361:20020052 

S. Olney. (2019). A Collection of Information About Amateur Pulsar Detection. Neutron Star Group. Retrieved 
from http://www.neutronstar.joataman.net/  

S.R. Kulkarni. (2017). Folding a Time Series. Retrieved from https://sites.astro.caltech.edu/~srk/Ay3/Folding/Fold-
ing.pdf 

Z. Pleunis, C. G. Bassa, J. W. T. Hessels, V. I. Kondratiev, et al. (2017). A Millisecond Pulsar Discovery in a Sur-
vey of Unidentified Fermi γ-Ray Sources with LOFAR. The Astrophysical Journal Letters, 846:L19 (7pp). 
DOI:https://doi.org/10.3847/2041-8213/aa83ff 

Volume 10 Issue 2 (2021) 

ISSN: 2167-1907 www.JSR.org 13

https://casswww.ucsd.edu/archive/public/tutorial/ISM.html
https://casswww.ucsd.edu/archive/public/tutorial/ISM.html
http://adsabs.harvard.edu/pdf/2002ASPC..278..251S
http://adsabs.harvard.edu/pdf/2002ASPC..278..251S
about:blank
about:blank
http://ipta.phys.wvu.edu/files/student-week-2018/pulsar_timing_lecture.pdf
http://ipta.phys.wvu.edu/files/student-week-2018/ism_lecture.pdf
https://doi.org/10.1016/j.asr.2016.10.018
https://www.semanticscholar.org/paper/Dos-and-don%27ts-of-reduced-chi-squared-Andrae-Schulze-Hartung/353308ea0f2e5be88f397cbd5c0528bc0069208b
https://www.semanticscholar.org/paper/Dos-and-don%27ts-of-reduced-chi-squared-Andrae-Schulze-Hartung/353308ea0f2e5be88f397cbd5c0528bc0069208b
http://www.scienceguyrob.com/wp-content/uploads/2016/12/WhyArePulsarsHardToFind_Lyon_2016.pdf
http://www.scienceguyrob.com/wp-content/uploads/2016/12/WhyArePulsarsHardToFind_Lyon_2016.pdf
about:blank
http://pulsarsearchcollaboratory.com/wp-content/uploads/2016/01/PSC_search_guide.pdf
https://doi.org/10.1051/0004-6361:20020052
http://www.neutronstar.joataman.net/
https://sites.astro.caltech.edu/%7Esrk/Ay3/Folding/Folding.pdf
https://sites.astro.caltech.edu/%7Esrk/Ay3/Folding/Folding.pdf
https://doi.org/10.3847/2041-8213/aa83ff



