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ABSTRACT 
 
This experiment examined whether the transfer of DNA or RNA from conditioned planaria could make the recipients 
more susceptible to similar conditioning. It has been shown in prior experiments that cephalization is not necessary 
for memory retention in planaria, so there must be another, non-neural mechanism for memory. Thus, changes in DNA 
or RNA may be responsible for memory retention and introducing these changes to naive planaria could transfer the 
"memory" of the conditioned donor. This study included 3 groups of 11 planaria: the control group, the DNA receival 
group, and the RNA receival group. After the control group was conditioned, each planarian’s RNA and DNA were 
extracted and given to its genetically identical counterparts in the DNA and RNA receival groups. The number of 
trials it took to condition the planaria in each group was measured and compared to see if the transfer of RNA or DNA 
made the recipients more easily conditional than the control donor group. The results show that the transfer of RNA 
and DNA made insignificant changes to the conditionability of recipients. However, further research may be able to 
identify the location of memory-bearing molecules, which, if applied to experiments similar to this one, would ensure 
that the planaria received a high enough concentration of genetic material for any changes present to have a significant 
effect.  
 

Introduction 
 
Planaria are considered to have a primitive brain because of their primitive synaptic nervous system with cranial 
ganglia, organized to suggest that they have the capacity for learning (Abbot & Wong, 2008, p. 160). Planaria are the 
first organisms to have a true synaptic nervous system, definite encephalization, and bilateral symmetry, which are 
traits that can be traced to higher species (Mueller, 2002, p. 1). These qualities make planaria a good candidate for 
study of basic memory and learning processes.  

Planaria have been shown to have the capacity for learning and conditioning, and this experiment utilizes 
associative learning, specifically classical conditioning. In associative learning, the brain relates two events with one 
response as a unit (Hawkins & Byrne, 2015, p. 1). Classical conditioning, a type of association, enhances the response 
to stimulation of one pathway with activity in another (Hawkins & Byrne, 2015, pp. 1-2). Typically, in classical 
conditioning, a weak conditioned stimulus (CS) becomes more effective in producing a behavioral response when 
paired with a strong unconditioned stimulus (UCS) (Hawkins & Byrne, 2015, pp. 1-2). When learning has occurred, 
the planaria anticipate their response to the UCS after sensing the CS (Mueller, 2002, p. 1).  
 The original idea in memory research was that the engram, a hypothetical biophysical or biochemical change 
occurring when a memory was created, was stored in the synapse (Carney, 2018, p. 1). However, experiments on 
planaria have shown that memory and learned responses are not stored exclusively in the cranial ganglia because when 
a planarian is conditioned and then cut transversely, both regenerated sections have equal retention of conditioned 
behavior, although the tail sections do not contain the original cranial ganglia (Mueller, 2002; Ragland & Ragland, 
1965; Shomrat & Levin, 2013; Smalheiser et al., 2001; Walker, 1966; Walker & Milton, 1966). Since both segments 
equally retain the memory of the original planarian, it suggests that cephalization, or the presence of the sense organs 
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and brain in the head region, is not necessary for memory retention and that memory is not a purely neurological 
mechanism (Mueller, 2002, pp. 1-2). A non-neural mechanism, possibly molecular, may occur throughout the body 
to record information, explaining this phenomenon (Mueller, 2002, p.14). 

Many hypotheses for the location and mechanism of memory include genetic material like RNA. Modern 
discoveries such as epigenetic modification (in many cell types besides the central nervous system (CNS)) and RNAi 
support the plausibility of memory traces being encoded and stored in remaining tissues after head removal (Shomrat 
& Levin, 2013, p. 3807). Mueller mentions that memory may involve RNA modification, specifically in the neoblasts 
of planaria, which are the un-differentiated cells containing a high volume of genetic material responsible for regen-
eration in planaria (Mueller, 2002, p. 14). 
 It is likely that epigenetic pathways, responsible for determining patterns of self-organization of neural and 
non-neural (but electrically communicating) cells, also regulate both brain remodeling and regeneration (Shomrat & 
Levin, 2013, p. 3807). It is also possible that only a rough correlate of memory exists in the neoblasts, and a brief re-
exposure to conditioning is necessary to trigger its effects in the planarian’s behavior (Shomrat & Levin, 2013, p. 
3807). The information stored outside of the brain must then be implanted on the new brain after regeneration of the 
top half (Shomrat & Levin, 2013, p. 3800). The brain is still the main drive of the planarian’s behavior since planaria 
regenerated from the bottom half of conditioned planaria do not show the learned behavior until after the brain has 
been regenerated (Shomrat & Levin, 2013, p. 3807).  
 In experiments during the 1960s, James V. McConnell found that by injecting chemical extracts of condi-
tioned planaria into naïve planaria, or by feeding them conditioned planaria (since planaria are cannibals), they could 
exhibit conditioned responses with no training (Smalheiser et al., 2001, p. 216). More contemporary studies have 
opposed the idea that literal memories are transferred. It is more likely that the increased responsivity of cannibal 
planaria may be due to an intensified sensitivity to experimental variables as a consequence of ingesting shocked 
tissues (Walker & Milton, 1966, p. 293).  

In a different experiment, Walker tested to see if RNA increases sensitivity to the stimulus or if the actual 
association between the stimulus and response is passed on (Walker, 1966). He found that cannibalism enhances 
sensitization but does not pass memories (Walker, 1966). In his experiment, RNA was transferred between two dif-
ferent species of planaria to see if RNA from an easily trained species, D. dorotocephala, could make a less easily 
conditionable species, D. tigrina, subsequently conditionable. The results showed that some factor from the condition-
ing of D. dorotocephala was transferable through cannibalism to D. tigrina because they became more easily condi-
tionable compared to D. tigrina that did not receive any RNA (Walker, 1966, p. 118). Another experiment by Ragland 
and Ragland showed similar results: conditioning in planaria not previously able to be conditioned was mediated by 
a transferable factor in the RNA from trained conditionable planaria (Ragland & Ragland, 1965, p. 118).   
There have been many experiments on conditioning and memory in Aplysia that explore RNA transfer. In Aplysia, 
Bédécarrats et al. as well as Carney found that RNA from the CNS of sensitized individuals induces behavioral sen-
sitization when injected into the CNS of naive Aplysia, suggesting that the nucleus is a cellular location for memory 
storage (Bédécarrats et al., 2018; Carney, 2018). RNA injection causes DNA methylation of existing genes, so Bé-
décarrats et al. proposed that specifically non-coding RNAs, which mediate epigenetic changes, are responsible for 
the behavioral results (Bédécarrats et al., 2018, pp. 1, 8; Carney, 2018, p. 2). The findings support the idea that RNA 
generates a priming component of the engram for long-term sensitization, and that RNA transfer induces epigenetic, 
non-synaptic changes, which mediate behavioral effects resembling the effect of conditioning in trained animals (Car-
ney, 2018, p. 2). These findings also suggest that more concrete results may be possible if certain parts of genetic 
material are isolated and concentrated.  

Given this information, this study tries to determine whether the transfer of DNA or RNA from classically 
conditioned planaria to naive planaria will make the recipient planaria more easily conditional.  
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Materials and Methods 
 
Basic Planaria Care 
 
Dugesia dorotocephala planaria were obtained from Flinn Scientific, Inc. Eleven of the largest and healthiest planaria 
were separated from the general population and stored individually. The planaria were kept in petri dishes filled with 
bottled spring water and stored in a dark, room temperature area. They were fed hard-boiled egg yolk twice a week, 
and their containers were cleaned less than six hours later to remove the residual food and waste. 
 
Classic Conditioning 
 
Before training, the 11 selected planaria were cut transversely and allowed 13 days to regenerate in separate containers. 
Each original planarian, after being cut, was separated randomly between the experimental conditioning group (ECG) 
and the experimental receival group (ERG). 13 days later, the ERG was cut transversely again to randomly separate 
the group into the DNA receival group (ERG DNA) and the RNA receival group (ERG RNA). This process guaranteed 
that each of the 33 planaria had a genetically identical counterpart in the other two groups. Later, when the DNA and 
RNA was transferred, the three corresponding groups also ensured that any changes in the ERG groups after receiving 
genetic material from their genetically identical counterpart were due to changes in the genetic material after the 
conditioning of the ECG and not any differences that would have been present in the DNA between unrelated planaria.  
 

 
Figure 1. Illustration of the division of a planarian between the three experimental groups. All planaria resulting from 
the ancestor planarian are genetically identical. Planaria photo (Black Planaria, n.d).  
 
The 11 planaria in the ECG received conditioning meant to instigate associative learning (on the same day that the 
ERG was separated). Each individual planarian was placed in the center of a plastic petri dish filled with saltwater in 
a ratio of 0.1 g of salt: 200 mL of water.  

The conditioning consisted of shining a concentrated flashlight (CS) on the planarian for 3 seconds and 
shocking (UCS) the subject by completing a circuit composed of four AA batteries and two wires. One of the wires 
was permanently in the water, and to complete the circuit, the other wire was temporarily placed in the water. The 
planarian was shocked briefly, which resulted in a body contraction. The saltwater in the dish was exchanged after 
every 2 planaria testing rounds. The planarian was considered trained when it anticipated the shock by contracting 
after the application of the flashlight but before the actual shock was applied in three consecutive runs.  
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Figure 2. Illustration of a model of the training apparatus used. Planaria photo (Black Planaria, n.d).  
 
Extraction and Introduction of Genetic Material 
 
The DNA and RNA of the 11 planaria in the ECG were extracted on the same day as conditioning and given to their 
genetically identical member of the ERGs. The Rapid DNA Isolation Kit was used to extract the genetic material from 
the ECG planaria. Each trained planarian was crushed into fine particles with 50 μl of lysis solution. A 3-mm diameter 
disc of Whatman No. 1 Chromatography paper was fully submerged in the solution with sterile tweezers for one 
minute. The chromatography paper was transferred to a fresh microfuge tube with 200 μl of wash buffer and soaked 
for one minute. After that time, a sterile pipette was used to drag the paper to the top of the tube in order to air dry for 
2 minutes to evaporate the ethanol. After the disc dried, it was transferred into a fresh microfuge tube with 50 μl of 
TE and frozen. It was left there for four days to allow the ERGs to regenerate.  

After four days, the TE solution from each planarian was thawed and split in half, resulting in two microfuge 
tubes containing 25 μl of the TE solution. For the tube being given to the ERG RNA, 5 μl of DNAse buffer, 0.5 μl of 
DNAse, and 19.5 μl of water was added. For the ERG DNA sample, 0.5 μl of RNAse was added. The DNA and RNA 
solutions were incubated at 37ºC for 10 minutes.  
After incubation, the samples were removed, and 0.05-0.1 g of hard-boiled egg was mixed with each sample. A strange 
reaction noted was that the DNA solution caused the hard-boiled egg to deteriorate before it was given to the planaria. 
The egg was then given to the appropriate member of the ERGs depending on which ECG planarian the genetic 
material was extracted from.  
 
Testing 
 
The egg was left in the ERG’s water for two days before testing. They were conditioned with the same methods as the 
ECG. Once they displayed learning of the associative behavior by performing the conditioned response in three con-
secutive runs, their training was finished. 
 

Results 
 
The number of trials required to condition the ERG planaria was compared to the original ECG, the control group, to 
see if either of the treatments made a significant difference in the conditionability of the planaria.  
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To prepare the data for analysis, the number of training events of each planaria was organized based on its 
group and aligned with its genetically identical counterparts (see Table 1).  
 
Table 1. Number of trials required to condition each planarian. Each column contains the genetically identical coun-
terpart planaria in each group. 
 

*There are blank spots in the table where the data from that planarian could not be used because it became unrespon-
sive, or it was too underdeveloped to react to the CS.   
 

The first test performed was a Kolmogorov-Smirnov test to see if the values were normally distributed (see 
Figure 3). All of the results from the different groups were analyzed together in this test.  
 

 
Figure 3. Actual Distribution vs Normal Distribution of Planaria Conditioning Trials. All of the individual planaria 
conditioning trials were combined and analyzed with a Kolmogorov-Smirnov test to determine whether they were 
normally distributed.  
 

Since the data was normally distributed, a parametric test could be used. A parametric ANOVA one-way test 
was chosen to find any significant differences in the results of the three groups because an ANOVA test can compare 
several groups simultaneously with a multiple null hypothesis, and there was only one independent variable in this 
study: the type of genetic material received. The F-critical value (at 5%) was 0.08, which was less than the F calculated 
value, 3.47, showing that there were no significant variations in the number of conditioning trials among the three 
groups; therefore, neither the transfer of RNA nor DNA had a significant effect on the conditionability of the recipi-
ents.  
 

ECG 15 30 28 21 15 22 10 29 27 36 11 

RNA ERG -* 12 11 14 9 18 13 16 18 - * -* 

DNA ERG 29 9 11 20 19 10 9 -* 18 -* 25 
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Figure 4. Conditioning Trials Required in Each Group. A box and whisker chart showing the number of condition-
ing trials for each planaria separated by experimental group. 
 

Discussion 
 
The hypothesis that the transfer of RNA or DNA from a conditioned planarian could increase the conditionability of 
the recipient was not supported by the results of this experiment since the data analysis showed no significant differ-
ence between the conditionability of planaria that had received RNA or DNA and naive planaria. However, procedural 
differences may be the reason the results of this experiment do not support the findings of some of the papers discussed 
in the introduction as well as similar memory experiments on Aplysia.  

In Bédécarrats’ et al. experiment on Aplysia, they found that the RNA from long-term sensitized Aplysia can 
induce sensitization (Bédécarrats et al., 2018). Unlike in their experiment, the ECG group in this experiment was 
conditioned only once and the DNA/RNA was extracted on the same day; they were not conditioned long-term. The 
difference between long-term and short-term sensitization may also have to do with Walker and Milton’s finding that 
the number of shocks given to cannibalized flatworms was a positive function of the number of conditioned responses 
made by cannibal planaria (Walker & Milton, 1966, p. 293). Therefore, long-term conditioning and, consequently, 
more shocks given to the ECG group may lead to increased sensitization to the training stimulus.  

Assuming that RNA or DNA is able to alter the conditionability of recipients, the type and concentration of 
the genetic material may make a difference in the results. While it has been found that non-coding RNAs can mediate 
epigenetic modifications and that RNAi leads to selective suppression of individual gene functions, it is still unknown 
what specific part of genetic material is responsible for memory (Bédécarrats et al., 2018, p.1; Smalheiser et al., 2001, 
p. 216). RNAi can be induced by injecting double-stranded RNA into the body cavity in vivo, or by feeding animals 
bacteria that express exogenous RNAs, where, inside the cells, the double- RNA is cleaved into smaller protein-bound 
fragments that hybridize endogenous cellular sequences leading to selective degradation of endogenous mRNAs and 
suppression of individual gene functions (Smalheiser et al., 2001, p. 216).  

The inhibitory effects on gene function are persistent throughout the lifespan of the planaria and become 
amplified over time, spreading to other regions of the body, including the germ line (Smalheiser et al., 2001, p. 216). 
However, RNAi has specific requirements which make it difficult to replicate experiments in RNA; for example, 
double stranded-RNA has a short lifetime in cells, and its ability to elicit RNAi requires a minimum sequence length, 
so any variations in the timing of extraction or the integrity of RNA preparations are crucial (Smalheiser et al., 2001, 
p. 216). An additional barrier in investigating the dynamics of memory at a molecular level in planaria is the difficulty 
of developing a robust learning assay because challenges include limited sample sizes, difficulty in precisely replicat-
ing protocol, and a lack of quantitative analysis (Shomrat & Levin, 2013, p. 3800).  
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Conclusion 
 
Although the results of this experiment do not support the hypothesis that memory transfer through genetic material 
is possible, they do not disprove the possibility. Longer term sensitization of donor planaria as well as a more targeted 
transfer of genetic material may both magnify behavioral changes in recipients if present. Future research of genetic 
material like RNAi and non-coding RNA, as mentioned by Bédécarrats et al., 2018; Shomrat & Levin, 2013; and 
Smalheiser et al., 2001, may be able to pinpoint the exact location of memory-bearing molecules, which would make 
the transfer of conditioned behavior more straight forward. Furthermore, it is possible that if the specific type of 
genetic material responsible for memory was isolated and amplified, it would lead to more pronounced results in the 
recipients, rather than if they received a portion of all-inclusive DNA or RNA. Importantly, an increased understanding 
of the neurological and genetic underpinnings of memory will have important implications in medicine as a whole, 
including stem-cell-derived treatments of degenerative brain disorders in humans and a broader understanding of the 
fundamental issues of the mechanisms of memory encoding and storage (Shomrat & Levin, 2013, p. 3799, 3804).  
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